Sur la methode des elements finis hybrides pour le probleme biharmonique
暂无分享,去创建一个
[1] H. Schönheinz. G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .
[2] Franco Brezzi,et al. On the numerical solution of plate bending problems by hybrid methods , 1975 .
[3] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[4] Y. Ando,et al. On the convergence of a mixed finite element scheme for plate bending , 1973 .
[5] H. Beckert,et al. J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .
[6] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[7] Robert D. Cook,et al. Two hybrid elements for analysis of thick, thin and sandwich plates , 1972 .
[8] P. G. Ciarlet,et al. Interpolation theory over curved elements, with applications to finite element methods , 1972 .
[9] Gilbert Strang,et al. Approximation in the finite element method , 1972 .
[10] P. G. Ciarlet,et al. General lagrange and hermite interpolation in Rn with applications to finite element methods , 1972 .
[11] Philippe G. Ciarlet,et al. THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .
[12] E. Boschi. Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .
[13] Philippe G. Ciarlet,et al. Multipoint Taylor formulas and applications to the finite element method , 1971 .
[14] J. H. Bramble,et al. Bounds for a class of linear functionals with applications to Hermite interpolation , 1971 .
[15] I. Babuska. Error-bounds for finite element method , 1971 .
[16] Ivo Babuška,et al. The Rate of Convergence for the Finite Element Method , 1971 .
[17] O. Zienkiewicz. The Finite Element Method In Engineering Science , 1971 .
[18] J. Bramble,et al. Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .
[19] T. Pian,et al. A variational principle and the convergence of a finite-element method based on assumed stress distribution , 1969 .
[20] Miloš Zlámal,et al. On the finite element method , 1968 .
[21] Pin Tong,et al. Rationalization in Deriving Element Stiffness Matrix by Assumed Stress Approach , 1968 .
[22] P. Grisvard,et al. Caractérisation de quelques espaces d'interpolation , 1967 .