Sur la methode des elements finis hybrides pour le probleme biharmonique

[1]  H. Schönheinz G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .

[2]  Franco Brezzi,et al.  On the numerical solution of plate bending problems by hybrid methods , 1975 .

[3]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[4]  Y. Ando,et al.  On the convergence of a mixed finite element scheme for plate bending , 1973 .

[5]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[6]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[7]  Robert D. Cook,et al.  Two hybrid elements for analysis of thick, thin and sandwich plates , 1972 .

[8]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .

[9]  Gilbert Strang,et al.  Approximation in the finite element method , 1972 .

[10]  P. G. Ciarlet,et al.  General lagrange and hermite interpolation in Rn with applications to finite element methods , 1972 .

[11]  Philippe G. Ciarlet,et al.  THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .

[12]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[13]  Philippe G. Ciarlet,et al.  Multipoint Taylor formulas and applications to the finite element method , 1971 .

[14]  J. H. Bramble,et al.  Bounds for a class of linear functionals with applications to Hermite interpolation , 1971 .

[15]  I. Babuska Error-bounds for finite element method , 1971 .

[16]  Ivo Babuška,et al.  The Rate of Convergence for the Finite Element Method , 1971 .

[17]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[18]  J. Bramble,et al.  Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .

[19]  T. Pian,et al.  A variational principle and the convergence of a finite-element method based on assumed stress distribution , 1969 .

[20]  Miloš Zlámal,et al.  On the finite element method , 1968 .

[21]  Pin Tong,et al.  Rationalization in Deriving Element Stiffness Matrix by Assumed Stress Approach , 1968 .

[22]  P. Grisvard,et al.  Caractérisation de quelques espaces d'interpolation , 1967 .