A minimal contractor for the polar equation: Application to robot localization

Contractor programming relies on a catalog on elementary contractors which need to be as efficient as possible. In this paper, we introduce a new theorem that can be used to build minimal contractors consistent with equations, and another new theorem to derive an optimal separator from a minimal contractor. As an application, we focus on the channeling polar constraint associated to the change between Cartesian coordinates and Polar coordinates. We illustrate our method on the localization problem of an actual underwater robot where both range and goniometric measurements of landmarks are collected.

[1]  Luc Jaulin,et al.  Introduction to the algebra of separators with application to path planning , 2014, Eng. Appl. Artif. Intell..

[2]  Nacim Ramdani,et al.  Complex Interval Arithmetic Using Polar Form , 2006, Reliab. Comput..

[3]  Bernardo Wagner,et al.  Guaranteed Mobile Robot Tracking Using Robust Interval Constraint Propagation , 2012, ICIRA.

[4]  Luc Jaulin,et al.  Hull Consistency under Monotonicity , 2009, CP.

[5]  Philippe Bonnifait,et al.  iGPS: Global Positioning in Urban Canyons with Road Surface Maps , 2012, IEEE Intelligent Transportation Systems Magazine.

[6]  Gilles Trombettoni,et al.  Exploiting Common Subexpressions in Numerical CSPs , 2008, CP.

[7]  Andrea Garulli,et al.  Set membership localization and mapping for autonomous navigation , 2001 .

[8]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[9]  Gilles Trombettoni,et al.  Q-Intersection Algorithms for Constraint-Based Robust Parameter Estimation , 2014, AAAI.

[10]  Luc Jaulin,et al.  Contractor programming , 2009, Artif. Intell..

[11]  Martine Ceberio,et al.  Solving Nonlinear Systems by Constraint Inversion and Interval Arithmetic , 2000, AISC.

[12]  Nicolas Andreff,et al.  Interval method for calibration of parallel robots : Vision-based experiments , 2006 .

[13]  Luc Jaulin,et al.  Applied Interval Computation: A New Approach for Time-Delays Systems Analysis , 2007 .

[14]  Raazesh Sainudiin,et al.  Machine Interval Experiments , 2010 .

[15]  Simon Lacroix,et al.  Set-membership approach to the kidnapped robot problem , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[16]  E. Walter,et al.  Guaranteed mobile robot tracking using interval analysis , 1999 .

[17]  Rémy Guyonneau,et al.  A visibility information for multi-robot localization , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Eric Walter,et al.  Guaranteed robust nonlinear minimax estimation , 2002, IEEE Trans. Autom. Control..

[19]  Etienne Colle,et al.  Mobile robot localization by multiangulation using set inversion , 2013, Robotics Auton. Syst..

[20]  Frédéric Goualard,et al.  Revising Hull and Box Consistency , 1999, ICLP.

[21]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[22]  Pau Herrero i Viñas,et al.  Quantified real constraint solving using modal intervals with applications to control , 2006 .

[23]  R. Baker Kearfott Kreinovich, V., Lakeyev, A., Rohn, J., and Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations , 1998, Reliab. Comput..

[24]  V. Kreinovich Computational Complexity and Feasibility of Data Processing and Interval Computations , 1997 .