Dimension Results for Sample Paths of Operator Stable Lévy Processes

Let X= X(t),t[set membership, variant]R+ be an operator stable Levy process in Rd with exponent B, where B is an invertible linear operator on Rd. We determine the Hausdorff dimension and the packing dimension of the range X([0,1]) in terms of the real parts of the eigenvalues of B.

[1]  Moments of Random Vectors Which Belong to Some Domain of Normal Attraction , 1990 .

[2]  Uniform measure results for the image of subsets under Brownian motion , 1987 .

[3]  S. Taylor The use of packing measure in the analysis of random sets , 1986 .

[4]  D. Khoshnevisan,et al.  Measuring the range of an additive Lévy process , 2003 .

[5]  J. Kahane Some Random Series of Functions , 1985 .

[6]  William E. Pruitt,et al.  Sample path properties of processes with stable components , 1969 .

[7]  W. J. Hendricks Hausdorff Dimension in a Process with Stable Components--An Interesting Counterexample , 1972 .

[8]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[9]  C. Tricot,et al.  Packing measure, and its evaluation for a Brownian path , 1985 .

[10]  R. Wolpert Lévy Processes , 2000 .

[11]  K. Falconer Techniques in fractal geometry , 1997 .

[12]  The horizon problem for random surfaces , 1991 .

[13]  Lévy Processes: Capacity and Hausdorff Dimension , 2003, math/0406444.

[14]  Fractional Brownian motion and packing dimension , 1996 .

[15]  C. Tricot Two definitions of fractional dimension , 1982, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  W. J. Hendricks A Dimension Theorem for Sample Functions of Processes with Stable Components , 1973 .

[17]  W. Pruitt The Hausdorff Dimension of the Range of a Process with Stationary Independent Increments , 1969 .

[18]  M. Meerschaert,et al.  Hausdorff Dimension of Operator Stable Sample Paths , 2003 .

[19]  J. Geluk Π-regular variation , 1981 .

[20]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[21]  W. J. Hendricks A UNIFORM LOWER BOUND FOR HAUSDORFF DIMENSION FOR TRANSIENT SYMMETRIC LEVY PROCESSES , 1983 .

[22]  Raisa E. Feldman,et al.  Limit Distributions for Sums of Independent Random Vectors , 2002 .

[23]  Yimin Xiao,et al.  Random Fractals and Markov Processes , 2003 .

[24]  J. Mason,et al.  Operator-self-similar processes in a finite-dimensional space , 1982 .

[25]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[26]  Mark M. Meerschaert,et al.  The structure of the exponents and symmetries of an operator stable measure , 1993 .

[27]  Xia Yimin,et al.  Dimension properties of sample paths of self-similar processes , 1994 .

[28]  K. Falconer,et al.  Packing dimensions of projections and dimension profiles , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  Yimin Xiao Packing dimension of the image of fractional Brownian motion , 1997 .

[30]  D. Khoshnevisan,et al.  Additive Levy Processes: Capacity and Hausdorff Dimension , 2004 .

[31]  Narn-Rueih Shieh Multiple points of dilation-stable Lévy processes , 1998 .

[32]  S. James Taylor,et al.  Mathematical Proceedings of the Cambridge Philosophical Society The measure theory of random fractals , 2022 .