Recursive risk estimation for non-linear image deconvolution with a wavelet-domain sparsity constraint

We propose a recursive data-driven risk-estimation method for non-linear iterative deconvolution. Our two main contributions are 1) a solution-domain risk-estimation approach that is applicable to non-linear restoration algorithms for ill- conditioned inverse problems; and 2) a risk estimate for a state-of-the-art iterative procedure, the thresholded Landweber iteration, which enforces a wavelet-domain sparsity constraint. Our method can be used to estimate the SNR improvement at every step of the algorithm; e.g., for stopping the iteration after the highest value is reached. It can also be applied to estimate the optimal threshold level for a given number of iterations.