HDIP 2011 3rd Workshop on Heuristics for Domain-independent Planning

A∗ with admissible heuristics is a very successful approach to optimal planning. But how to derive such heuristics automatically? Merge-and-shrink abstraction (M&S) is a general approach to heuristic design whose key advantage is its capability to make very fine-grained choices in defining abstractions. However, little is known about how to actually make these choices. We address this via the well-known notion of bisimulation. When aggregating only bisimilar states, M&S yields a perfect heuristic. Alas, bisimulations are exponentially large even in trivial domains. We show how to apply label reduction – not distinguishing between certain groups of operators – without incurring any information loss, while potentially reducing bisimulation size exponentially. In several benchmark domains, the resulting algorithm computes perfect heuristics in polynomial time. Empirically, we show that approximating variants of this algorithm improve the state of the art in M&S heuristics. In particular, a hybrid of two such variants is competitive with the leading heuristic LM-cut.

[1]  Toby Walsh Breaking Value Symmetry , 2007, CP.

[2]  Stuart J. Russell,et al.  Angelic Hierarchical Planning: Optimal and Online Algorithms , 2008, ICAPS.

[3]  Susanne Biundo-Stephan,et al.  Landmarks in Hierarchical Planning , 2010, ECAI.

[4]  Eugene M. Luks,et al.  Permutation Groups and Polynomial-Time Computation , 1996, Groups And Computation.

[5]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.

[6]  Maria Fox,et al.  The identification and exploitation of almost symmetry in planning problems , 2004 .

[7]  Dana S. Nau,et al.  SHOP2: An HTN Planning System , 2003, J. Artif. Intell. Res..

[8]  Hector Geffner,et al.  Heuristic Planning with Time and Resources , 2014 .

[9]  Wheeler Ruml,et al.  Using Distance Estimates in Heuristic Search , 2009, ICAPS.

[10]  Andrew G. Barto,et al.  Learning to Act Using Real-Time Dynamic Programming , 1995, Artif. Intell..

[11]  Subbarao Kambhampati,et al.  Cost Based Satisficing Search Considered Harmful , 2011, ArXiv.

[12]  Robert Mattmüller,et al.  Using the Context-enhanced Additive Heuristic for Temporal and Numeric Planning , 2009, ICAPS.

[13]  Blai Bonet,et al.  Strengthening Landmark Heuristics via Hitting Sets , 2010, ECAI.

[14]  Stephen F. Smith,et al.  New Techniques for Algorithm Portfolio Design , 2008, UAI.

[15]  Jörg Hoffmann Local Search Topology in Planning Benchmarks: A Theoretical Analysis , 2002, PuK.

[16]  Csaba Szepesvári,et al.  Bandit Based Monte-Carlo Planning , 2006, ECML.

[17]  Jean-François Puget,et al.  On the Satisfiability of Symmetrical Constrained Satisfaction Problems , 1993, ISMIS.

[18]  Susanne Biundo-Stephan,et al.  On the Construction and Evaluation of Flexible Plan-Refinement Strategies , 2007, KI.

[19]  T. L. McCluskey Object Transition Sequences: A New Form of Abstraction for HTN Planners , 2000, AIPS.

[20]  R. Givan,et al.  Heuristic Planning via Roadmap Deduction , 2004 .

[21]  Bernhard Nebel,et al.  The FF Planning System: Fast Plan Generation Through Heuristic Search , 2011, J. Artif. Intell. Res..

[22]  Carmel Domshlak,et al.  Landmarks, Critical Paths and Abstractions: What's the Difference Anyway? , 2009, ICAPS.

[23]  Hector Geffner,et al.  Searching for Plans with Carefully Designed Probes , 2011, ICAPS.

[24]  Edsger W. Dijkstra,et al.  Go To Statement Considered Harmful , 2022, Software Pioneers.

[25]  Malte Helmert,et al.  How Good is Almost Perfect? , 2008, AAAI.

[26]  Rina Dechter,et al.  Generalized best-first search strategies and the optimality of A* , 1985, JACM.

[27]  Maria Fox,et al.  The Detection and Exploitation of Symmetry in Planning Problems , 1999, IJCAI.

[28]  Subbarao Kambhampati,et al.  Sapa: A Multi-objective Metric Temporal Planner , 2003, J. Artif. Intell. Res..

[29]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[30]  Geoffrey J. Gordon,et al.  Bounded real-time dynamic programming: RTDP with monotone upper bounds and performance guarantees , 2005, ICML.

[31]  Patrik Haslum,et al.  Flexible Abstraction Heuristics for Optimal Sequential Planning , 2007, ICAPS.

[32]  A. Prasad Sistla,et al.  Symmetry and model checking , 1993, Formal Methods Syst. Des..

[33]  Stefan Edelkamp,et al.  Optimal Symbolic Planning with Action Costs and Preferences , 2009, IJCAI.

[34]  László Méro,et al.  A Heuristic Search Algorithm with Modifiable Estimate , 1984, Artif. Intell..

[35]  Hector Geffner,et al.  Heuristics for Planning with Action Costs Revisited , 2008, ECAI.

[36]  James A. Hendler,et al.  Plan-Refinement Strategies and Search-Space Size , 1997, ECP.

[37]  Eyal Amir,et al.  Factored planning , 2003, IJCAI 2003.

[38]  Ronen I. Brafman,et al.  Factored Planning: How, When, and When Not , 2006, AAAI.

[39]  Hector Geffner,et al.  Unifying the Causal Graph and Additive Heuristics , 2008, ICAPS.

[40]  RaphaelBertram,et al.  Correction to "A Formal Basis for the Heuristic Determination of Minimum Cost Paths" , 1972 .

[41]  Blai Bonet,et al.  Labeled RTDP: Improving the Convergence of Real-Time Dynamic Programming , 2003, ICAPS.

[42]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[43]  Jörg Hoffmann,et al.  Ordered Landmarks in Planning , 2004, J. Artif. Intell. Res..

[44]  Maria Fox,et al.  Extending the Exploitation of Symmetries in Planning , 2002, AIPS.

[45]  Patrik Haslum,et al.  Cost-Optimal Factored Planning: Promises and Pitfalls , 2010, ICAPS.

[46]  Michael Kearns,et al.  Near-Optimal Reinforcement Learning in Polynomial Time , 2002, Machine Learning.

[47]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[48]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[49]  Malte Helmert,et al.  Preferred Operators and Deferred Evaluation in Satisficing Planning , 2009, ICAPS.

[50]  Bernhard Nebel,et al.  COMPLEXITY RESULTS FOR SAS+ PLANNING , 1995, Comput. Intell..

[51]  Peter Jeavons,et al.  Symmetry Definitions for Constraint Satisfaction Problems , 2005, CP.

[52]  Matthias F. Stallmann,et al.  Optimization algorithms for the minimum-cost satisfiability problem , 2004 .

[53]  Erez Karpas,et al.  Sensible Agent Technology Improving Coordination and Communication in Biosurveillance Domains , 2009, IJCAI.

[54]  James A. Hendler,et al.  UMCP: A Sound and Complete Procedure for Hierarchical Task-network Planning , 1994, AIPS.

[55]  David E. Smith,et al.  Temporal Planning with Mutual Exclusion Reasoning , 1999, IJCAI.

[56]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[57]  Laura Sebastia,et al.  On the extraction, ordering, and usage of landmarks in planning , 2001 .

[58]  Adnan Darwiche,et al.  Recursive conditioning , 2001, Artif. Intell..

[59]  Malte Helmert,et al.  The Fast Downward Planning System , 2006, J. Artif. Intell. Res..

[60]  Malte Helmert,et al.  Sound and Complete Landmarks for And/Or Graphs , 2010, ECAI.

[61]  Andreas Podelski,et al.  Useless Actions Are Useful , 2008, ICAPS.

[62]  Vincent Vidal,et al.  A Lookahead Strategy for Heuristic Search Planning , 2004, ICAPS.

[63]  Petteri Kaski,et al.  Engineering an Efficient Canonical Labeling Tool for Large and Sparse Graphs , 2007, ALENEX.

[64]  Jussi Rintanen,et al.  Symmetry Reduction for SAT Representations of Transition Systems , 2003, ICAPS.

[65]  Silvia Richter,et al.  The LAMA Planner: Guiding Cost-Based Anytime Planning with Landmarks , 2010, J. Artif. Intell. Res..

[66]  Subbarao Kambhampati,et al.  G-Value Plateaus: A Challenge for Planning , 2010, ICAPS.

[67]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..