Analysis of an insertion mutation in a cohort of 94 patients with spinocerebellar ataxia type 31 from Nagano, Japan
暂无分享,去创建一个
Naomichi Matsumoto | Kunihiro Yoshida | Shu-ichi Ikeda | Hiroshi Morita | H. Morita | N. Matsumoto | Kunihiro Yoshida | S. Ikeda | Haruya Sakai | Yusaku Shimizu | Haruya Sakai | Y. Shimizu
[1] Y. Fukushima,et al. A −16C>T substitution in the 5′ UTR of the puratrophin-1 gene is prevalent in autosomal dominant cerebellar ataxia in Nagano , 2006, Journal of Human Genetics.
[2] I. Kanazawa,et al. Physical map and haplotype analysis of 16q-linked autosomal dominant cerebellar ataxia (ADCA) type III in Japan , 2003, Journal of Human Genetics.
[3] H. Mizusawa,et al. A linkage disequilibrium at the candidate gene locus for 16q-linked autosomal dominant cerebellar ataxia type III in Japan , 2001, Journal of Human Genetics.
[4] Naomichi Matsumoto,et al. Severity and Progression Rate of Cerebellar Ataxia in 16q-linked Autosomal Dominant Cerebellar Ataxia (16q-ADCA) in the Endemic Nagano Area of Japan , 2009, The Cerebellum.
[5] Long Yu,et al. Cloning and identification of the human LPAAT-zeta gene, a novel member of the lysophosphatidic acid acyltransferase family , 2003, Journal of Human Genetics.
[6] K. Arimura,et al. Fine mapping of 16q-linked autosomal dominant cerebellar ataxia type III in Japanese families , 2004, Neurogenetics.
[7] Y. Fukushima,et al. Regional features of autosomal-dominant cerebellar ataxia in Nagano: clinical and molecular genetic analysis of 86 families , 2004, Journal of Human Genetics.
[8] H. Sasaki,et al. Spectrum and prevalence of autosomal dominant spinocerebellar ataxia in Hokkaido, the northern island of Japan: a study of 113 Japanese families , 2007, Journal of Human Genetics.
[9] J. Epplen,et al. Mutations of the puratrophin-1 (PLEKHG4) gene on chromosome 16q22.1 are not a common genetic cause of cerebellar ataxia in a European population , 2006, Journal of Human Genetics.
[10] T. Mizutani,et al. An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 is associated with a single-nucleotide substitution in the 5' untranslated region of the gene encoding a protein with spectrin repeat and Rho guanine-nucleotide exchange-factor domains. , 2005, American journal of human genetics.
[11] J. Inazawa,et al. Redefining the disease locus of 16q22.1-linked autosomal dominant cerebellar ataxia , 2007, Journal of Human Genetics.
[12] H. Shimazaki,et al. 16q-linked autosomal dominant cerebellar ataxia: A clinical and genetic study , 2006, Journal of the Neurological Sciences.
[13] K. Nakashima,et al. Clinical and genetic epidemiological study of 16q22.1‐linked autosomal dominant cerebellar ataxia in western Japan , 2007, Acta neurologica Scandinavica.
[14] Yuko Saito,et al. Spinocerebellar ataxia type 31 is associated with "inserted" penta-nucleotide repeats containing (TGGAA)n. , 2009, American journal of human genetics.
[15] M. Nishizawa,et al. Clinical and genetic characterizations of 16q‐linked autosomal dominant spinocerebellar ataxia (AD‐SCA) and frequency analysis of AD‐SCA in the Japanese population , 2007, Movement disorders : official journal of the Movement Disorder Society.
[16] Y. Itoyama,et al. Clinical features of chromosome 16q22.1 linked autosomal dominant cerebellar ataxia in Japanese , 2006, Neurology.