Improved polygenic prediction by Bayesian multiple regression on summary statistics

[1]  R. Casanova,et al.  The association between neighborhood socioeconomic status, cardiovascular and cerebrovascular risk factors, and cognitive decline in the Health and Retirement Study (HRS) , 2019, Aging & mental health.

[2]  Alkes L. Price,et al.  Modeling functional enrichment improves polygenic prediction accuracy in UK Biobank and 23andMe data sets , 2018, bioRxiv.

[3]  Doug Speed,et al.  SumHer better estimates the SNP heritability of complex traits from summary statistics , 2018, Nature Genetics.

[4]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[5]  E. Topol,et al.  The personal and clinical utility of polygenic risk scores , 2018, Nature Reviews Genetics.

[6]  Nilanjan Chatterjee,et al.  Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits , 2018, Nature Genetics.

[7]  Jonathan P. Beauchamp,et al.  Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals , 2018, Nature Genetics.

[8]  S. Rosset,et al.  Estimating SNP-Based Heritability and Genetic Correlation in Case-Control Studies Directly and with Summary Statistics. , 2018, American journal of human genetics.

[9]  Po-Ru Loh,et al.  Mixed-model association for biobank-scale datasets , 2018, Nature Genetics.

[10]  Luke R. Lloyd-Jones,et al.  Signatures of negative selection in the genetic architecture of human complex traits , 2018, Nature Genetics.

[11]  A multi-trait Bayesian method for mapping QTL and genomic prediction , 2018, Genetics, selection, evolution : GSE.

[12]  P. Visscher,et al.  Meta-analysis of genome-wide association studies for height and body mass index in ∼700,000 individuals of European ancestry , 2018, bioRxiv.

[13]  Louis Lello,et al.  Accurate Genomic Prediction of Human Height , 2017, Genetics.

[14]  M. Pirinen,et al.  Prospects of Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from Genome-wide Association Studies. , 2017, American journal of human genetics.

[15]  Jian Yang,et al.  Concepts, estimation and interpretation of SNP-based heritability , 2017, Nature Genetics.

[16]  P. Visscher,et al.  10 Years of GWAS Discovery: Biology, Function, and Translation. , 2017, American journal of human genetics.

[17]  Peter M Visscher,et al.  Inference on the Genetic Basis of Eye and Skin Color in an Admixed Population via Bayesian Linear Mixed Models , 2017, Genetics.

[18]  R. Mägi,et al.  Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel , 2017, European Journal of Human Genetics.

[19]  Pak Chung Sham,et al.  Polygenic scores via penalized regression on summary statistics , 2016, bioRxiv.

[20]  Tanya M. Teslovich,et al.  Genetic evidence of assortative mating in humans , 2017, Nature Human Behaviour.

[21]  B. Neale,et al.  Linkage disequilibrium dependent architecture of human complex traits reveals action of negative selection , 2016, bioRxiv.

[22]  A. Price,et al.  Dissecting the genetics of complex traits using summary association statistics , 2016, Nature Reviews Genetics.

[23]  Xiang Zhu,et al.  Bayesian large-scale multiple regression with summary statistics from genome-wide association studies , 2016, bioRxiv.

[24]  Jianxin Shi,et al.  Developing and evaluating polygenic risk prediction models for stratified disease prevention , 2016, Nature Reviews Genetics.

[25]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[26]  Heidi L. Rehm,et al.  Building the foundation for genomics in precision medicine , 2015, Nature.

[27]  P. Visscher,et al.  Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores , 2015, bioRxiv.

[28]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[29]  Tom R. Gaunt,et al.  The UK10K project identifies rare variants in health and disease , 2016 .

[30]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[31]  P. Visscher,et al.  Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index , 2015, Nature Genetics.

[32]  M. Inouye,et al.  Genomic risk prediction of complex human disease and its clinical application. , 2015, Current opinion in genetics & development.

[33]  R. Mägi,et al.  Cohort Profile Cohort Profile : Estonian Biobank of the Estonian Genome Center , University of Tartu , 2015 .

[34]  P. Visscher,et al.  Mixed model with correction for case-control ascertainment increases association power. , 2015, American journal of human genetics.

[35]  M. Daly,et al.  An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.

[36]  P. Visscher,et al.  Simultaneous Discovery, Estimation and Prediction Analysis of Complex Traits Using a Bayesian Mixture Model , 2015, PLoS genetics.

[37]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[38]  Jack Euesden,et al.  PRSice: Polygenic Risk Score software , 2014, Bioinform..

[39]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[40]  B. Berger,et al.  Efficient Bayesian mixed model analysis increases association power in large cohorts , 2014, Nature Genetics.

[41]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[42]  S. Rosset,et al.  Measuring missing heritability: Inferring the contribution of common variants , 2014, Proceedings of the National Academy of Sciences.

[43]  Yvonne Bordon Tumour immunology: Anticancer drugs need bugs , 2013, Nature Reviews Immunology.

[44]  N. Wray,et al.  Research review: Polygenic methods and their application to psychiatric traits. , 2014, Journal of child psychology and psychiatry, and allied disciplines.

[45]  Amanda Sonnega,et al.  Cohort Profile: the Health and Retirement Study (HRS). , 2014, International journal of epidemiology.

[46]  P. Visscher,et al.  Advantages and pitfalls in the application of mixed-model association methods , 2014, Nature Genetics.

[47]  Gad Abraham,et al.  Fast Principal Component Analysis of Large-Scale Genome-Wide Data , 2014, bioRxiv.

[48]  Joseph K. Pickrell Joint analysis of functional genomic data and genome-wide association studies of 18 human traits , 2013, bioRxiv.

[49]  Gaurav Bhatia,et al.  Fast and accurate imputation of summary statistics enhances evidence of functional enrichment , 2013, Bioinform..

[50]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[51]  Donghyung Lee,et al.  DIST: direct imputation of summary statistics for unmeasured SNPs , 2013, Bioinform..

[52]  P. Visscher,et al.  Pitfalls of predicting complex traits from SNPs , 2013, Nature Reviews Genetics.

[53]  Nicholas Katsanis,et al.  Molecular genetic testing and the future of clinical genomics , 2013, Nature Reviews Genetics.

[54]  F. Dudbridge Power and Predictive Accuracy of Polygenic Risk Scores , 2013, PLoS genetics.

[55]  Xiang Zhou,et al.  Polygenic Modeling with Bayesian Sparse Linear Mixed Models , 2012, PLoS genetics.

[56]  Bjarni J. Vilhjálmsson,et al.  The nature of confounding in genome-wide association studies , 2012, Nature Reviews Genetics.

[57]  Doug Speed,et al.  Improved heritability estimation from genome-wide SNPs. , 2012, American journal of human genetics.

[58]  M Erbe,et al.  Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. , 2012, Journal of dairy science.

[59]  P. Visscher,et al.  Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.

[60]  P. Visscher,et al.  Estimating missing heritability for disease from genome-wide association studies. , 2011, American journal of human genetics.

[61]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[62]  Rohan L. Fernando,et al.  Extension of the bayesian alphabet for genomic selection , 2011, BMC Bioinformatics.

[63]  Wen Huang,et al.  MTML-msBayes: Approximate Bayesian comparative phylogeographic inference from multiple taxa and multiple loci with rate heterogeneity , 2011, BMC Bioinformatics.

[64]  Daniel Gianola,et al.  Predicting genetic predisposition in humans: the promise of whole-genome markers , 2010, Nature Reviews Genetics.

[65]  Naomi R. Wray,et al.  Estimating Effects and Making Predictions from Genome-Wide Marker Data , 2010, 1010.4710.

[66]  Matthew Stephens,et al.  USING LINEAR PREDICTORS TO IMPUTE ALLELE FREQUENCIES FROM SUMMARY OR POOLED GENOTYPE DATA. , 2010, The annals of applied statistics.

[67]  Nilanjan Chatterjee,et al.  Estimation of effect size distribution from genome-wide association studies and implications for future discoveries , 2010, Nature Genetics.

[68]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[69]  P. Visscher,et al.  Common polygenic variation contributes to risk of schizophrenia and bipolar disorder , 2009, Nature.

[70]  Peter M Visscher,et al.  Prediction of individual genetic risk of complex disease. , 2008, Current opinion in genetics & development.

[71]  Peter M Visscher,et al.  Prediction of individual genetic risk to disease from genome-wide association studies. , 2007, Genome research.

[72]  M. Stephens,et al.  Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. , 2003, Genetics.

[73]  M. Goddard,et al.  Prediction of total genetic value using genome-wide dense marker maps. , 2001, Genetics.

[74]  G. Robinson That BLUP is a Good Thing: The Estimation of Random Effects , 1991 .

[75]  Aric Invest The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators , 1989 .

[76]  A. Folsom,et al.  The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. , 1989, American journal of epidemiology.

[77]  R. Elston,et al.  The investigation of linkage between a quantitative trait and a marker locus , 1972, Behavior genetics.