Effects of lattice distortion and chemical short-range ordering on the incipient behavior of Ti-based multi-principal element alloys: MD simulations and DFT calculations

[1]  Wenjun Lu,et al.  Deformable κ phase induced deformation twins in a CoNiV medium entropy alloy , 2022, International Journal of Plasticity.

[2]  Jin Gao,et al.  First-principles study of vacancy defects in TiVTa and TiVTaNb concentrated solid-solution alloys , 2022, Journal of Nuclear Materials.

[3]  R. Ritchie,et al.  Determination of peak ordering in the CrCoNi medium-entropy alloy via nanoindentation , 2022, Acta Materialia.

[4]  E. Ma,et al.  Local chemical inhomogeneities in TiZrNb-based refractory high-entropy alloys , 2022, Journal of Materials Science & Technology.

[5]  Minsheng Huang,et al.  First-principles study of hydrogen-vacancy interactions in CoCrFeMnNi high-entropy alloy , 2022, Journal of Alloys and Compounds.

[6]  Junqin Shi,et al.  Atomistic understanding of incipient plasticity in BCC refractory high entropy alloys , 2022, Journal of Alloys and Compounds.

[7]  D. Farkas,et al.  Dislocation emission and propagation under a nano-indenter in a model high entropy alloy , 2022, Computational Materials Science.

[8]  Fang Dong,et al.  Indenter radius effect on mechanical response of a-(11–20), c-(0001), and m-(-1100) plane GaN single crystals in nanoindentation: A molecular dynamics study , 2022, Materials Science in Semiconductor Processing.

[9]  Xiancheng Zhang,et al.  Chemical short-range order strengthening mechanism in CoCrNi medium-entropy alloy under nanoindentation , 2022, Scripta Materialia.

[10]  D. Xie,et al.  Ultralong One-Dimensional Plastic Zone Created in Aluminum Underneath a Nanoscale Indent , 2022, SSRN Electronic Journal.

[11]  Liqiang Wang,et al.  Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys , 2021, Acta Materialia.

[12]  Jin Yang,et al.  Ab initio study of local lattice distortion of hexagonal closed-packed high-entropy (Mo0.25Nb0.25Ta0.25V0.25) (Al0.5Si0.5)2 and the influence on thermodynamic property , 2021 .

[13]  P. Liaw,et al.  The predicted rate-dependent deformation behaviour and multistage strain hardening in a model heterostructured body-centered cubic high entropy alloy , 2021 .

[14]  Junqin Shi,et al.  Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation , 2021, International Journal of Plasticity.

[15]  Q. He,et al.  Chemical fluctuation enabling strength-plasticity synergy in metastable single-phase high entropy alloy film with gigapascal yield strength , 2021 .

[16]  Xiazi Xiao,et al.  A unified statistical model for indentation pop-in: Effects of indenter radius and microstructure density on the transition from homogeneous nucleation to heterogeneous nucleation to bulk plasticity , 2021, International Journal of Plasticity.

[17]  Yuan Wu,et al.  Short-range ordering and its effects on mechanical properties of high-entropy alloys , 2021 .

[18]  Ye Han,et al.  Nanoindentation into FeCoNiCrCu high-entropy alloy: an atomistic study , 2021 .

[19]  A. Minor,et al.  Dislocation structures below a nano-indent of the CoCrNi medium-entropy alloy , 2021 .

[20]  K. An,et al.  Lattice‐Distortion‐Enhanced Yield Strength in a Refractory High‐Entropy Alloy , 2020, Advanced materials.

[21]  G. Duscher,et al.  Effect of interstitial oxygen and nitrogen on incipient plasticity of NbTiZrHf high-entropy alloys , 2020 .

[22]  I. Beyerlein,et al.  Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi , 2020 .

[23]  W. Curtin,et al.  Effect of solute-solute interactions on strengthening of random alloys from dilute to high entropy alloys , 2020 .

[24]  L. Dai,et al.  Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment , 2020, Acta Materialia.

[25]  Jacob C. Huang,et al.  Lattice distortion effect on incipient behavior of Ti-based multi-principal element alloys , 2020 .

[26]  Jia Li,et al.  Indentation-induced plastic behaviour of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminate: an atomic simulation , 2020, RSC advances.

[27]  T. Fang,et al.  Interfacial mechanics and shear deformation of indented germanium on silicon (001) using molecular dynamics , 2020 .

[28]  A. Stukowski,et al.  Grain boundary structure and mobility in high-entropy alloys: A comparative molecular dynamics study on a Σ11 symmetrical tilt grain boundary in face-centered cubic CuNiCoFe , 2020 .

[29]  Y. C. Wu,et al.  Effect of orientation and loading rate on the incipient behavior of Ti60(AlCrVNb)40 medium entropy alloy , 2020 .

[30]  R. Banerjee,et al.  Temperature dependent deformation behavior and strengthening mechanisms in a low density refractory high entropy alloy Al10Nb15Ta5Ti30Zr40 , 2020, Materialia.

[31]  W. Curtin,et al.  Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K , 2019, Acta Materialia.

[32]  W. Curtin,et al.  Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys , 2020 .

[33]  C. Woodward,et al.  Chemical Short Range Order Strengthening in a Model FCC High Entropy Alloy , 2020, Acta Materialia.

[34]  R. Ritchie,et al.  Verification of Short-Range Order and Its Impact on the Properties of the CrCoNi Medium Entropy Alloy , 2019, 1912.05610.

[35]  S. Ogata,et al.  Atomistic prediction of the temperature- and loading-rate-dependent first pop-in load in nanoindentation , 2019, International Journal of Plasticity.

[36]  H. Urbassek,et al.  Nanoindentation into a high-entropy alloy – An atomistic study , 2019, Journal of Alloys and Compounds.

[37]  K. An,et al.  First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation , 2019, Acta Materialia.

[38]  H. Sheng,et al.  Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways , 2019, Nature Communications.

[39]  S. Mukherjee,et al.  Activation Volume and Energy for Dislocation Nucleation in Multi-Principal Element Alloys , 2019, Metals.

[40]  Jian Xu,et al.  Incipient plasticity and activation volume of dislocation nucleation for TiZrNbTaMo high-entropy alloys characterized by nanoindentation , 2019, Journal of Materials Science & Technology.

[41]  S. Pal,et al.  Structural evolution and dislocation behaviour study during nanoindentation of Mo20W20Co20Ta20Zr20 high entropy alloy coated Ni single crystal using molecular dynamic simulation , 2019, Molecular Simulation.

[42]  D. Ponge,et al.  Ultrastrong Medium‐Entropy Single‐Phase Alloys Designed via Severe Lattice Distortion , 2018, Advanced materials.

[43]  S. Pal,et al.  Dislocation Interaction and V-Shaped Growth of the Distorted Structure During Nanoindentation of Cu20Ni20Al20Co20Fe20 (high-entropy alloy)-Coated Copper: A Molecular Dynamics Simulation-Based Study , 2019, Transactions of the Indian Institute of Metals.

[44]  Zhiliang Zhang,et al.  Dislocation based plasticity in the case of nanoindentation , 2018, International Journal of Mechanical Sciences.

[45]  Wei Chen,et al.  Lattice distortion in a strong and ductile refractory high-entropy alloy , 2018, Acta Materialia.

[46]  H. Bei,et al.  Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction , 2018, Materials & Design.

[47]  R. Ritchie,et al.  Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys , 2018, Proceedings of the National Academy of Sciences.

[48]  Tong-Yi Zhang,et al.  Multi-temperature indentation creep tests on nanotwinned copper , 2018 .

[49]  Megumi Kawasaki,et al.  Annealing effect on plastic flow in nanocrystalline CoCrFeMnNi high-entropy alloy: A nanomechanical analysis , 2017 .

[50]  T. Nieh,et al.  Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy , 2017 .

[51]  H. Sehitoglu,et al.  Transformation stress modeling in new Fe Mn Al Ni shape memory alloy , 2016 .

[52]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[53]  Haiming Lu,et al.  Atomistic simulations of the nanoindentation-induced incipient plasticity in Ni3Al crystal , 2016 .

[54]  P. Liaw,et al.  Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy , 2016, Metallurgical and Materials Transactions A.

[55]  S. Schmidt,et al.  Robust structural identification via polyhedral template matching , 2016, 1603.05143.

[56]  W. Curtin,et al.  Average-atom interatomic potential for random alloys , 2016 .

[57]  T. Nieh,et al.  Elastic and plastic deformations in a high entropy alloy investigated using a nanoindentation method , 2016 .

[58]  Pierre Hirel,et al.  Atomsk: A tool for manipulating and converting atomic data files , 2015, Comput. Phys. Commun..

[59]  A. Aabloo,et al.  Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys , 2015 .

[60]  R. Kositski,et al.  Depinning-controlled plastic deformation during nanoindentation of BCC iron thin films and nanoparticles , 2015 .

[61]  H. Urbassek,et al.  Comparative simulation study of the structure of the plastic zone produced by nanoindentation , 2015 .

[62]  M. Meyers,et al.  Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution , 2014 .

[63]  Herbert M. Urbassek,et al.  Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions , 2014 .

[64]  Ling Zhang,et al.  Plasticity initiation and evolution during nanoindentation of an iron-3% silicon crystal. , 2014, Physical review letters.

[65]  B. Dutta,et al.  Active slip systems in bcc iron during nanoindentation: A molecular dynamics study , 2013 .

[66]  T. Nieh,et al.  Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy , 2013 .

[67]  Michael Widom,et al.  Hybrid Monte Carlo/Molecular Dynamics Simulation of a Refractory Metal High Entropy Alloy , 2013, Metallurgical and Materials Transactions A.

[68]  X. Hui,et al.  An n-body potential for a Zr–Nb system based on the embedded-atom method , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[69]  M. Biener,et al.  Planar defect nucleation and annihilation mechanisms in nanocontact plasticity of metal surfaces. , 2012, Physical review letters.

[70]  P. Rivera-Díaz-del-Castillo,et al.  Dislocation annihilation in plastic deformation: I. Multiscale irreversible thermodynamics , 2012 .

[71]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[72]  Yanfei Gao,et al.  Indentation Schmid factor and orientation dependence of nanoindentation pop-in behavior of NiAl single crystals , 2011 .

[73]  R. Johnson,et al.  Erratum: Computational study of the generation of crystal defects in a bcc metal target irradiated by short laser pulses [Phys. Rev. B 77, 214108 (2008)] , 2011 .

[74]  Alexander Stukowski,et al.  Extracting dislocations and non-dislocation crystal defects from atomistic simulation data , 2010 .

[75]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[76]  Ting Zhu,et al.  Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals , 2007, Proceedings of the National Academy of Sciences.

[77]  A. Minor,et al.  A new view of the onset of plasticity during the nanoindentation of aluminium , 2006, Nature materials.

[78]  C. Schuh,et al.  Determining the activation energy and volume for the onset of plasticity during nanoindentation , 2006 .

[79]  R. Johnson,et al.  Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers , 2004 .

[80]  K. Lu,et al.  Deformation behavior of Ni3Al single crystals during nanoindentation , 2003 .

[81]  M. Ortiz,et al.  Effect of indenter-radius size on Au(001) nanoindentation. , 2003, Physical review letters.

[82]  G. Ceder,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002, cond-mat/0212159.

[83]  B. Johansson,et al.  Anisotropic lattice distortions in random alloys from first-principles theory. , 2001, Physical review letters.

[84]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[85]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[86]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[87]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[88]  Bing Liu,et al.  Reverse martensitic phase transformation induced in Nb–Co multilayers by ion irradiation , 1994 .

[89]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[90]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[91]  Olson,et al.  Energetics of bcc-fcc lattice deformation in iron. , 1989, Physical review. B, Condensed matter.

[92]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[93]  W. Williams,et al.  Elastic Deformation, Plastic Flow, and Dislocations in Single Crystals of Titanium Carbide , 1962 .

[94]  J. M. Cowley,et al.  An Approximate Theory of Order in Alloys , 1950 .

[95]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.