Estimating the parameters of a Gompertz-type diffusion process by means of Simulated Annealing

Abstract This paper explores the application of the Simulated Annealing algorithm for the maximum likelihood estimation of the parameters of a Gompertz-type process. Firstly, the solution space is bounded using relevant information about the process provided by the sample data. Secondly, a proposal for improvement is made, namely the application of a second cycle of the algorithm, including a refinement factor. Finally, both the specifications for the application of the algorithm and the proposed improvement are validated through their application to simulated and real data.

[1]  L. Varona,et al.  A Bayesian analysis of the effect of selection for growth rate on growth curves in rabbits , 2003, Genetics Selection Evolution.

[2]  Benjamin Gompertz,et al.  On the Nature of the Function Expressive of the Law of Human Mortality , 1815 .

[3]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[4]  Ahmed Nafidi,et al.  A new stochastic Gompertz diffusion process with threshold parameter: Computational aspects and applications , 2006, Appl. Math. Comput..

[5]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[6]  A. Diaz,et al.  Heuristic design and fundamentals of the Simulated Annealing , 2003 .

[7]  R. Cooper Growth in the ostrich (Struthio camelus var. domesticus) , 2005 .

[8]  L. M. Ricciardi,et al.  Growth with regulation in random environment , 1974, Kybernetik.

[9]  R. Gutiérrez-Jáimez,et al.  A new Gompertz-type diffusion process with application to random growth. , 2007, Mathematical biosciences.

[10]  W. Y. Tan A stochastic Gompertz birth-death process , 1986 .

[11]  Ivo Düntsch,et al.  Maximum Consistency of Incomplete Data via Non-Invasive Imputation , 2004, Artificial Intelligence Review.

[12]  V. Giorno,et al.  Inferring the effect of therapy on tumors showing stochastic Gompertzian growth. , 2011, Journal of theoretical biology.

[13]  B. Gompertz,et al.  On the Nature of the Function Expressive of the Law of Human Mortality , 1825 .

[14]  Y. Yamashita,et al.  Growth and morphological development of sagittal otoliths of larval and early juvenile Trachurus japonicus , 2005 .

[15]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[16]  Stephen S. Wilson,et al.  Random iterative models , 1996 .

[17]  Patricia Román-Román,et al.  SOME TIME RANDOM VARIABLES RELATED TO A GOMPERTZ-TYPE DIFFUSION PROCESS , 2008, Cybern. Syst..

[18]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[19]  José A. Díaz-García,et al.  A new family of life distributions for dependent data: Estimation , 2007, Comput. Stat. Data Anal..

[20]  Benjamin Gompertz,et al.  XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F. R. S. &c , 1825, Philosophical Transactions of the Royal Society of London.

[21]  E. García‐Berthou,et al.  Age and growth of European bitterling [Rhodeus sericeus] in the Wieprz-Krzna Canal, Poland , 2004 .

[22]  Laird Ak Dynamics of Tumour Growth: Comparison of Growth Rates and Extrapolation of Growth Curve to One Cell , 1965 .

[23]  José A. Díaz-García,et al.  A global simulated annealing heuristic for the three-parameter lognormal maximum likelihood estimation , 2008, Computational Statistics & Data Analysis.