Control of goal-directed and stimulus-driven attention in the brain

We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect.

[1]  D. Spalding The Principles of Psychology , 1873, Nature.

[2]  C. L. M. The Psychology of Attention , 1890, Nature.

[3]  W. James,et al.  The Principles of Psychology. , 1983 .

[4]  Charles Curtis Eriksen,et al.  The extent of processing of noise elements during selective encoding from visual displays , 1973 .

[5]  J Weinberg,et al.  Visual scanning training effect on reading-related tasks in acquired right brain damage. , 1977, Archives of physical medicine and rehabilitation.

[6]  A. Oke,et al.  Lateralization of norepinephrine in human thalamus. , 1978, Science.

[7]  D. Rosenbaum Human movement initiation: specification of arm, direction, and extent. , 1980, Journal of experimental psychology. General.

[8]  R Sekuler,et al.  Models of stimulus uncertainty in motion perception. , 1980, Psychological review.

[9]  M. Posner,et al.  Attention and the detection of signals. , 1980, Journal of experimental psychology.

[10]  D. Robinson,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. , 1981, Journal of neurophysiology.

[11]  L. Bérubé,et al.  [Clinical neuropsychology]. , 1982, Nursing Quebec.

[12]  S. Wise,et al.  Motor aspects of cue-related neuronal activity in premotor cortex of the rhesus monkey , 1983, Brain Research.

[13]  F. J. Friedrich,et al.  Effects of parietal injury on covert orienting of attention , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  H. Egeth,et al.  Searching for conjunctively defined targets. , 1984, Journal of experimental psychology. Human perception and performance.

[15]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[16]  D. Stuss,et al.  The Frontal Lobes , 1986 .

[17]  S. Foote,et al.  Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in old and new world monkeys , 1986, The Journal of comparative neurology.

[18]  Giuseppe Vallar,et al.  The Anatomy of Spatial Neglect in Humans , 1987 .

[19]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[20]  F. Boller,et al.  Lack of heart rate changes during an attention‐demanding task after right hemisphere lesions , 1987, Neurology.

[21]  M. Jeannerod Neurophysiological and neuropsychological aspects of spatial neglect. , 1987 .

[22]  T. Shallice,et al.  Frontal lesions and sustained attention , 1987, Neuropsychologia.

[23]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[24]  M. Goldberg Neurophysiological and neuropsychological aspects of spatial neglect Edited by M. Jeannerod, Advances in Pschology, No. 45, North-Holland, Amsterdam, 1987. 346 pp. , 1988, Neuropsychologia.

[25]  J Jonides,et al.  Programming saccadic eye movements. , 1988, Journal of experimental psychology. Human perception and performance.

[26]  P. Rabbitt,et al.  Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption , 1989 .

[27]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[28]  H. J. Muller,et al.  Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. , 1989, Journal of experimental psychology. Human perception and performance.

[29]  M. Posner,et al.  The attention system of the human brain. , 1990, Annual review of neuroscience.

[30]  S. Yantis,et al.  Abrupt visual onsets and selective attention: voluntary versus automatic allocation. , 1990, Journal of experimental psychology. Human perception and performance.

[31]  P. Goldman-Rakic,et al.  Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex. , 1991, Journal of neurophysiology.

[32]  Mark W. Greenlee,et al.  Stimulus-specific mechanisms of visual short-term memory , 1991, Vision Research.

[33]  M. Raichle,et al.  Localization of a human system for sustained attention by positron emission tomography , 1991, Nature.

[34]  J. C. Johnston,et al.  Involuntary covert orienting is contingent on attentional control settings. , 1992, Journal of experimental psychology. Human perception and performance.

[35]  P. Halligan,et al.  Measuring visual neglect in acute stroke and predicting its recovery: the visual neglect recovery index. , 1992, Journal of neurology, neurosurgery, and psychiatry.

[36]  D. Robinson,et al.  Covert orienting of attention in macaques. I. Effects of behavioral context. , 1993, Journal of neurophysiology.

[37]  M. Corbetta,et al.  A PET study of visuospatial attention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  Ian H. Robertson,et al.  Unilateral Neglect: Clinical and Experimental Studies edited by Ian H. Robertson and John C. Marshall , 1994 .

[39]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[40]  J. Maunsell,et al.  Neuronal correlates of inferred motion in primate posterior parietal cortex , 1995, Nature.

[41]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[42]  M. Corbetta,et al.  Superior Parietal Cortex Activation During Spatial Attention Shifts and Visual Feature Conjunction , 1995, Science.

[43]  P. Roland,et al.  Functional anatomy of reaching and visuomotor learning: a positron emission tomography study. , 1995, Cerebral cortex.

[44]  S. Monsell,et al.  Costs of a predictible switch between simple cognitive tasks. , 1995 .

[45]  M. A. Steinmetz,et al.  Neurophysiological evidence for a role of posterior parietal cortex in redirecting visual attention. , 1995, Cerebral cortex.

[46]  D. Robinson,et al.  Covert orienting of attention in macaques. II. Contributions of parietal cortex. , 1995, Journal of neurophysiology.

[47]  D. V. van Essen,et al.  Computerized Mappings of the Cerebral Cortex: A Multiresolution Flattening Method and a Surface-Based Coordinate System , 1996, Journal of Cognitive Neuroscience.

[48]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[49]  R. Marrocco,et al.  Visual orienting and alerting in rhesus monkeys: comparison with humans , 1996, Behavioural Brain Research.

[50]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[51]  H. Sakata,et al.  The TINS Lecture The parietal association cortex in depth perception and visual control of hand action , 1997, Trends in Neurosciences.

[52]  N. P. Bichot,et al.  Dissociation of visual discrimination from saccade programming in macaque frontal eye field. , 1997, Journal of neurophysiology.

[53]  G A Orban,et al.  Attention to One or Two Features in Left or Right Visual Field: A Positron Emission Tomography Study , 1997, The Journal of Neuroscience.

[54]  J V Haxby,et al.  Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI. , 1997, Journal of neurophysiology.

[55]  R. Andersen,et al.  Coding of intention in the posterior parietal cortex , 1997, Nature.

[56]  R. Blake,et al.  Memory for visual motion. , 1997, Journal of experimental psychology. Human perception and performance.

[57]  Leslie G. Ungerleider,et al.  Transient and sustained activity in a distributed neural system for human working memory , 1997, Nature.

[58]  Richard S. J. Frackowiak,et al.  Functional localization of the system for visuospatial attention using positron emission tomography. , 1997, Brain : a journal of neurology.

[59]  R T Knight,et al.  Anatomic bases of event-related potentials and their relationship to novelty detection in humans. , 1998, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[60]  Jason B. Mattingley,et al.  Motor role of human inferior parietal lobe revealed in unilateral neglect patients , 1998, Nature.

[61]  P. Cavanagh,et al.  Cortical fMRI activation produced by attentive tracking of moving targets. , 1998, Journal of neurophysiology.

[62]  C. Marzi,et al.  The spatial distribution of visual attention in hemineglect and extinction patients. , 1998, Brain : a journal of neurology.

[63]  M Corbetta,et al.  Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J. Mattingley,et al.  Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness , 1998, Nature.

[65]  S. Savage-Rumbaugh,et al.  Apes, Language, and the Human Mind , 1998 .

[66]  X. Hu,et al.  4 T-fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions. , 1998, Journal of neurophysiology.

[67]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[68]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[69]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[70]  Joel R. Meyer,et al.  A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. , 1999, Brain : a journal of neurology.

[71]  M. Mesulam,et al.  Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[72]  M. Corbetta,et al.  Areas Involved in Encoding and Applying Directional Expectations to Moving Objects , 1999, The Journal of Neuroscience.

[73]  N. P. Bichot,et al.  Effects of similarity and history on neural mechanisms of visual selection , 1999, Nature Neuroscience.

[74]  N. Kanwisher,et al.  The Generality of Parietal Involvement in Visual Attention , 1999, Neuron.

[75]  M. Mesulam Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[76]  P. Goldman-Rakic,et al.  Prefrontal Activation Evoked by Infrequent Target and Novel Stimuli in a Visual Target Detection Task: An Event-Related Functional Magnetic Resonance Imaging Study , 2000, The Journal of Neuroscience.

[77]  S. Zeki,et al.  The neurology of saccades and covert shifts in spatial attention: an event-related fMRI study. , 2000, Brain : a journal of neurology.

[78]  J. Gore,et al.  A Stimulus-Driven Approach to Object Identity and Location Processing in the Human Brain , 2000, Neuron.

[79]  D. Gitelman,et al.  Covert Visual Spatial Orienting and Saccades: Overlapping Neural Systems , 2000, NeuroImage.

[80]  Apes, language and the human mind , 2000 .

[81]  Ravi S. Menon,et al.  A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. , 2000, Journal of neurophysiology.

[82]  M. Corbetta,et al.  Voluntary orienting is dissociated from target detection in human posterior parietal cortex , 2000, Nature Neuroscience.

[83]  J. Downar,et al.  A multimodal cortical network for the detection of changes in the sensory environment , 2000, Nature Neuroscience.

[84]  N. Kanwisher,et al.  Visual attention: Insights from brain imaging , 2000, Nature Reviews Neuroscience.

[85]  Stephen M. Rao,et al.  Neural Mechanisms of Visual Attention: Object-Based Selection of a Region in Space , 2000, Journal of Cognitive Neuroscience.

[86]  M. Mesulam,et al.  The central role of the prefrontal cortex in directing attention to novel events. , 2000, Brain : a journal of neurology.

[87]  R. Benson,et al.  Responses to rare visual target and distractor stimuli using event-related fMRI. , 2000, Journal of neurophysiology.

[88]  G. Orban,et al.  Attention Mechanisms in Visual SearchAn fMRI Study , 2000, Journal of Cognitive Neuroscience.

[89]  B. Dosher,et al.  Mechanisms of perceptual attention in precuing of location , 2000, Vision Research.

[90]  C L Colby,et al.  Visual, saccade-related, and cognitive activation of single neurons in monkey extrastriate area V3A. , 2000, Journal of neurophysiology.

[91]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[92]  R. Passingham,et al.  The prefrontal cortex: response selection or maintenance within working memory? , 2000, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[93]  H. Pashler,et al.  The Psychology of Attention , 2000 .

[94]  N. Meiran,et al.  Component Processes in Task Switching , 2000, Cognitive Psychology.

[95]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[96]  John R. Anderson,et al.  The role of prefrontal cortex and posterior parietal cortex in task switching. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[97]  M. D’Esposito,et al.  Modulation of task-related neural activity in task-switching: an fMRI study. , 2000, Brain research. Cognitive brain research.

[98]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple stimulus displays: II. responses are suppressed at the cued location. , 2001, Cerebral cortex.

[99]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[100]  M Corbetta,et al.  Multiple neural correlates of detection in the human brain. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Joel L. Davis,et al.  Visual attention and cortical circuits , 2001 .

[102]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[103]  Matthew F. S. Rushworth,et al.  Attention systems and the organization of the human parietal cortex , 2001, NeuroImage.

[104]  S. Ferber,et al.  Spatial awareness is a function of the temporal not the posterior parietal lobe , 2001, Nature.

[105]  Scott A. Huettel,et al.  Dissociating the Neural Mechanisms of Visual Attention in Change Detection Using Functional MRI , 2001, Journal of Cognitive Neuroscience.

[106]  C. Frith,et al.  Neural correlates of change detection and change blindness , 2001, Nature Neuroscience.

[107]  K. Kiehl,et al.  Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. , 2001, Psychophysiology.

[108]  J. Downar,et al.  The Effect of Task Relevance on the Cortical Response to Changes in Visual and Auditory Stimuli: An Event-Related fMRI Study , 2001, NeuroImage.

[109]  T. Braver,et al.  Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. , 2001, Cerebral cortex.

[110]  T. Robbins,et al.  Distinct Changes in Cortical Acetylcholine and Noradrenaline Efflux during Contingent and Noncontingent Performance of a Visual Attentional Task , 2001, The Journal of Neuroscience.

[111]  J. Jonides,et al.  Overlapping mechanisms of attention and spatial working memory , 2001, Trends in Cognitive Sciences.

[112]  M. Corbetta,et al.  Two attentional processes in the parietal lobe. , 2002, Cerebral cortex.

[113]  Maurizio Corbetta,et al.  Reactivation of networks involved in preparatory states. , 2002, Cerebral cortex.

[114]  M. Corbetta,et al.  Neural Systems for Visual Orienting and Their Relationships to Spatial Working Memory , 2002, Journal of Cognitive Neuroscience.

[115]  J. Assad,et al.  Dynamic coding of behaviourally relevant stimuli in parietal cortex , 2002, Nature.

[116]  Christopher Kennard,et al.  Visual neglect associated with frontal lobe infarction , 1996, Journal of Neurology.

[117]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.

[118]  B. Brooks,et al.  Frontiers in Clinical Neuroscience , 2004, Advances in Experimental Medicine and Biology.