A low complexity parameter estimation technique for LFMCW signals

Linear frequency modulated continuous waveform (LFMCW) is a modulation technique commonly used in bistatic radar systems due to its constant power and excellent range resolution. In this paper, we propose a method for estimating the parameters of an unknown LFMCW signal embedded in noise. The parameters to be estimated include sweep length, time offset, bandwidth, and center frequency. Unlike existing LFMCW parameter estimation techniques, which estimate the parameters jointly, the proposed method estimates the unknown parameters in a sequential order. As a result, it has a very low computational complexity. In addition, it does not require any prior information about the unknown parameters. This property together with its low complexity makes it a suitable candidate for real-time applications.

[1]  Peter Händel,et al.  Frequency rate estimation at high SNR , 1997, IEEE Trans. Signal Process..

[2]  Boaz Porat,et al.  Estimation and classification of polynomial-phase signals , 1991, IEEE Trans. Inf. Theory.

[3]  J. Hassab,et al.  Analysis of discrete implementation of generalized cross correlator , 1981 .

[4]  Petar M. Djuric,et al.  Parameter estimation of chirp signals , 1990, IEEE Trans. Acoust. Speech Signal Process..

[5]  Peter O'Shea,et al.  On Refining Polynomial Phase Signal Parameter Estimates , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[6]  Lawrence R. Rabiner,et al.  On the use of autocorrelation analysis for pitch detection , 1977 .

[7]  T. Abatzoglou Fast Maximnurm Likelihood Joint Estimation of Frequency and Frequency Rate , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[8]  Georgios B. Giannakis,et al.  Estimating random amplitude polynomial phase signals: a cyclostationary approach , 1995, IEEE Trans. Signal Process..

[9]  T. Abatzoglou,et al.  "Fast maximum likelihood joint estimation of frequency and frequency rate" , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[10]  Xiaoming Lai,et al.  Interpolation methods for time-delay estimation using cross-correlation method for blood velocity measurement , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[11]  Maïté Brandt-Pearce,et al.  Detection and Estimation of LFMCW Radar Signals , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[12]  B. Porat,et al.  Linear FM signal parameter estimation from discrete-time observations , 1991 .

[13]  Andrew Gerald Stove,et al.  Linear FMCW radar techniques , 1992 .

[14]  Pooi Yuen Kam,et al.  Improved, Approximate, Time-Domain ML Estimators of Chirp Signal Parameters and Their Performance Analysis , 2009, IEEE Transactions on Signal Processing.

[15]  Xiang-Gen Xia,et al.  Discrete chirp-Fourier transform and its application to chirp rate estimation , 2000, IEEE Trans. Signal Process..

[16]  Karim Abed-Meraim,et al.  Estimating the parameters of chirp signals: an iterative approach , 1998, IEEE Trans. Signal Process..

[17]  P. O'Shea A new technique for instantaneous frequency rate estimation , 2002, IEEE Signal Processing Letters.

[18]  Gerard Ledwich,et al.  A computationally efficient technique for estimating the parameters of polynomial-phase signals from noisy observations , 2005, IEEE Transactions on Signal Processing.

[19]  Peter O'Shea,et al.  A fast algorithm for estimating the parameters of a quadratic FM signal , 2004, IEEE Transactions on Signal Processing.

[20]  Benjamin Friedlander,et al.  The discrete polynomial-phase transform , 1995, IEEE Trans. Signal Process..

[21]  Peter O'Shea,et al.  Extending the Performance of the Cubic Phase Function Algorithm , 2007, IEEE Transactions on Signal Processing.

[22]  Björn E. Ottersten,et al.  Chirp parameter estimation from a sample covariance matrix , 2001, IEEE Trans. Signal Process..

[23]  I. Djurovic,et al.  Integrated Cubic Phase Function for Linear FM Signal Analysis , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[24]  Hajime Kobayashi,et al.  Weighted autocorrelation for pitch extraction of noisy speech , 2001, IEEE Trans. Speech Audio Process..