A Systematic Approach to Computing the Manipulator Jacobian and Hessian using the Elementary Transform Sequence

The elementary transform sequence (ETS) provides a universal method of describing the kinematics of any serial-link manipulator. The ETS notation is intuitive and easy to understand, while avoiding the complexity and limitations of Denvit-Hartenberg frame assignment. In this paper, we describe a systematic method for computing the manipulator Jacobian and Hessian (differential kinematics) using the ETS notation. Differential kinematics have many applications including numerical inverse kinematics, resolved-rate motion control and manipulability motion control. Furthermore, we provide an open-source Python library which implements our algorithm and can be interfaced with any serial-link manipulator (available at this http URL).

[1]  Daniel E. Whitney,et al.  Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .

[2]  Eiichi Yoshida,et al.  Infeasibility-free inverse kinematics method , 2015, 2015 IEEE/SICE International Symposium on System Integration (SII).

[3]  Peter Corke,et al.  NEO: A Novel Expeditious Optimisation Algorithm for Reactive Motion Control of Manipulators , 2020, IEEE Robotics and Automation Letters.

[4]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[5]  Peter I. Corke,et al.  A Simple and Systematic Approach to Assigning Denavit–Hartenberg Parameters , 2007, IEEE Transactions on Robotics.

[6]  A. Borisov,et al.  Rigid Body Dynamics , 2018 .

[7]  Quang-Cuong Pham,et al.  Critically fast pick-and-place with suction cups , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[8]  Tao Sun,et al.  An Approach to Formulate the Hessian Matrix for Dynamic Control of Parallel Robots , 2019, IEEE/ASME Transactions on Mechatronics.

[9]  Peter Corke,et al.  A Purely-Reactive Manipulability-Maximising Motion Controller. , 2020 .

[10]  Arjang Hourtash The kinematic Hessian and higher derivatives , 2005, 2005 International Symposium on Computational Intelligence in Robotics and Automation.

[11]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[12]  Ivan Petrovic,et al.  Fast Manipulability Maximization Using Continuous-Time Trajectory optimization , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[13]  Roy Featherstone,et al.  Rigid Body Dynamics Algorithms , 2007 .

[14]  M. McCall,et al.  Rigid Body Dynamics , 2008 .

[15]  Pyung Chang A closed-form solution for inverse kinematics of robot manipulators with redundancy , 1987, IEEE Journal on Robotics and Automation.

[16]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[17]  Dongsheng Guo,et al.  Acceleration-Level Inequality-Based MAN Scheme for Obstacle Avoidance of Redundant Robot Manipulators , 2014, IEEE Transactions on Industrial Electronics.

[18]  Dongsheng Guo,et al.  New Pseudoinverse-Based Path-Planning Scheme With PID Characteristic for Redundant Robot Manipulators in the Presence of Noise , 2018, IEEE Transactions on Control Systems Technology.