Parameters Affecting Primary Stability of Orthodontic Mini-implants

Aim:Treatment options in orthodontics have been expanded by skeletal anchorage via mini-implants over the last few years. Sufficient primary stability is imperative to minimize implant loss rate. The aim of this study was to quantitatively analyze the factors influencing primary stability: bone quality, implant-design, diameter, and depth of pilot drilling.Material and Methods:Thirty-six pelvic bone segments (ilium) of country pigs were dissected and embedded in resin. To determine the primary stability, we measured the insertion torque of five different mini-implant types (tomas®-pin [Dentaurum, Ispringen, Germany] 08 and 10 mm, and Dual Top [Jeil Medical Corporation, Seoul, Korea] 1.6 × 8 and 10 mm plus 2 × 10 mm). Twenty-five or 30 implants were inserted into each pelvic bone segment following preparation of the implant sites using pilot drill diameters of 1.0, 1.1, 1.2 and 1.3 mm and pilot drill depths of 1, 2, 3, 6 and 10 mm. Five implants were inserted for reference purposes to establish comparability. Thicknesses of bone compacta were measured via micro-computer tomography.Results:Insertion torques of orthodontic mini-implants and therefore primary stability varied greatly, depending on bone quality, implant-design, and preparation of implant site. Compared with the tomas®-pin, the Dual Top screw showed significantlygreater primary stability. Torque moments beyond 230 Nmm caused fractures of 9 Dual Top screws.Conclusion:Compacta thickness, implant design and implant site preparation have a strong impact on the primary stability of mini-implants for orthodontic anchorage. Depending on the insertion site and local bone quality, the clinician should choose an optimum combination of implant and pilot-drilling diameter and depth.ZusammenfassungEinleitung und Ziel:Die skelettale Verankerung mit Mini-Implantaten hat die Behandlungsmöglichkeiten der Kieferorthopädie in den letzten Jahren stark erweitert. Zur Minimierung der Verlustrate ist es erforderlich, eine ausreichende Primärstabilität zu erzielen. Ziel der Studie war es, die beeinflussenden Faktoren quantitativ zu analysieren: Knochenqualität, Schraubendesign, Pilotbohrtiefe und -durchmesser.Material und Methodik:36 Beckenknochen (Ilium) vom Landschwein wurden präpariert und in Kunststoff eingebettet. Für die Bestimmung der Primärstabilität wurde das Eindrehmoment von fünf verschiedenen Mini-Implantat-Typen (tomas®-pin [Dentaurum, Ispringen, Deutschland] 08 und 10 mm, Dual Top [Jeil Medical Corporation, Seoul, Korea] 1,6 × 8 und 10 mm sowie 2 × 10 mm) gemessen und als Funktion zum Drehwinkel aufgezeichnet. Nach unterschiedlicher Aufbereitung des Implantatlagers (Pilotbohrdurchmesser: 1,0, 1,1, 1,2 und 1,3 mm; Pilotbohrtiefe: 1, 2, 3, 6 und 10 mm) wurden pro Beckenknochen 25 bzw. 30 Implantate gesetzt. Jeweils fünf Referenz-Implantate wurden inseriert, um eine Vergleichbarkeit zwischen den Präparaten herzustellen. Die Dicke der Kompakta wurde mittels Mikro-Computertomographie ermittelt.Ergebnisse:Das Eindrehmoment und damit die Primärstabilität der untersuchten kieferorthopädischen Mini-Implantate zeigte je nach Knochenqualität, Form und Größe des Implantates sowie der Vorbereitung des Implantatlagers große Unterschiede. Die Dual-Top-Schraube erreichte im Vergleich mit dem tomas®-pin eine signifikant höhere Primärstabilität. Bei Eindrehmomenten von über 230 Nmm kam es bei neun Dual-Top-Schrauben zur Implantatfraktur.Schlussfolgerung:Kompaktadicke, Schraubenart und die Vorbereitung des Implantatlagers spielen bei Mini-Implantaten zu Verankerungszwecken in Bezug auf die Primärstabilität eine wichtige Rolle. Je nach der Insertionsregion und der damit verbundenen Knochenqualität sollte eine optimale Kombination von Vorbohrtiefe, Vorbohrdurchmesser und Implantat gewählt werden.

[1]  Peter Diedrich,et al.  Clinical Suitability of Titanium Microscrews for Orthodontic Anchorage—Preliminary Experiences , 2004, Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie.

[2]  N Meredith,et al.  Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. , 1996, Clinical oral implants research.

[3]  L Sennerby,et al.  Measurements comparing the initial stability of five designs of dental implants: a human cadaver study. , 2000, Clinical implant dentistry and related research.

[4]  L Sennerby,et al.  Evaluation of bone density using cutting resistance measurements and microradiography: an in vitro study in pig ribs. , 1995, Clinical oral implants research.

[5]  R. Wächter,et al.  [Cortical thickness of the mandible with special reference to miniplate osteosynthesis. Morphometric analysis of autopsy material]. , 2001, Mund-, Kiefer- und Gesichtschirurgie : MKG.

[6]  R Kanomi,et al.  Mini-implant for orthodontic anchorage. , 1997, Journal of clinical orthodontics : JCO.

[7]  W. Birkfellner,et al.  Bone mineral density measurement with dental quantitative CT prior to dental implant placement in cadaver mandibles: pilot study. , 2002, Radiology.

[8]  da Cunha Ha,et al.  A comparison between cutting torque and resonance frequency in the assessment of primary stability and final torque capacity of standard and TiUnite single-tooth implants under immediate loading. , 2004 .

[9]  P I Brånemark,et al.  A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. , 1981, International journal of oral surgery.

[10]  Sang-Heng Kok,et al.  A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. , 2004, The International journal of oral & maxillofacial implants.

[11]  P Diedrich,et al.  The Orthosystem--a new implant system for orthodontic anchorage in the palate. , 1996, Journal of orofacial orthopedics = Fortschritte der Kieferorthopadie : Organ/official journal Deutsche Gesellschaft fur Kieferorthopadie.

[12]  G Zarb,et al.  The long-term efficacy of currently used dental implants: a review and proposed criteria of success. , 1986, The International journal of oral & maxillofacial implants.

[13]  Shouichi Miyawaki,et al.  Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. , 2003, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[14]  B Melsen,et al.  Immediate loading of implants used for orthodontic anchorage. , 2000, Clinical orthodontics and research.

[15]  P. Rozing,et al.  A finite element analysis of the push-out test: influence of test conditions. , 1992, Journal of biomedical materials research.

[16]  N Meredith,et al.  Assessment of implant stability as a prognostic determinant. , 1998, The International journal of prosthodontics.

[17]  Sadami Tsutsumi,et al.  Assessment of correlation between computerized tomography values of the bone and cutting torque values at implant placement: a clinical study. , 2005, The International journal of oral & maxillofacial implants.

[18]  R. Haas,et al.  Bicortical titanium screws for critical orthodontic anchorage in the mandible: a preliminary report on clinical applications. , 2001, Clinical oral implants research.

[19]  L Sennerby,et al.  A comparison between cutting torque and resonance frequency measurements of maxillary implants. A 20-month clinical study. , 1999, International journal of oral and maxillofacial surgery.

[20]  N Meredith,et al.  A review of nondestructive test methods and their application to measure the stability and osseointegration of bone anchored endosseous implants. , 1998, Critical reviews in biomedical engineering.

[21]  Judith Maria Pinheiro Ottoni,et al.  Correlation between placement torque and survival of single-tooth implants. , 2005, The International journal of oral & maxillofacial implants.

[22]  Y Zilberman,et al.  Osseous adaptation to continuous loading of rigid endosseous implants. , 1984, American journal of orthodontics.

[23]  J. Münch,et al.  Kieferorthopädische Behandlung erwachsener Patienten-Beraten und Überwachen , 1987, Fortschritte der Kieferorthopädie.

[24]  B Melsen,et al.  Miniscrews as orthodontic anchorage: a preliminary report. , 1998, The International journal of adult orthodontics and orthognathic surgery.