Enhanced spread Aloha physical layer design and performance

SUMMARY This paper describes the key design and performance aspects of the Enhanced Spread Spectrum Aloha (E-SSA) physical layer, which represents an essential component of the S-band Mobile Interactive Multimedia European Telecommunication Institute standard. Thanks to advanced signal processing at the gateway side, the E-SSA random access protocol allows to achieve unprecedented spectral efficiency in a pure asynchronous random access mode with high robustness against received packets power unbalance. The E-SSA physical layer is closely derived from the Third Generation Partnership Wideband Code Division Multiple Access random access channel physical layer with some adaptation to best operate in the Land Mobile Satellite channels. Particular emphasis is devoted to the E-SSA physical layer system design drivers as well to the packet transmission control policies, which are of high relevance for S-band Mobile Interactive Multimedia. The demodulator architectural design is also illustrated jointly with some of the key detection performance. Finally, the E-SSA random access protocol performance are reported for Additive White Gaussian Noise and satellite mobile channels. Copyright © 2014 John Wiley & Sons, Ltd.

[1]  Riccardo De Gaudenzi,et al.  Enhanced spread spectrum ALOHA system level performance assessment , 2014, Int. J. Satell. Commun. Netw..

[2]  S. Budisin Efficient pulse compressor for Golay complementary sequences , 1991 .

[3]  Tho Le-Ngoc,et al.  Performance analysis of CFDAMA-PB protocol for packet satellite communications , 1998, IEEE Trans. Commun..

[4]  Snezana Lawrence October , 1855, The Hospital.

[5]  Marco Luise,et al.  Signal recognition and signature code acquisition in CDMA mobile packet communications , 1998 .

[6]  Sergio Verdu,et al.  Multiuser Detection , 1998 .

[7]  R. De Gaudenzi,et al.  A high efficiency scheme for quasi-real-time satellite mobile messaging systems , 2008, 2008 10th International Workshop on Signal Processing for Space Communications.

[8]  Giuseppe Caire,et al.  Wide-band CDMA for the UMTS/IMT-2000 satellite component , 2002, IEEE Trans. Veh. Technol..

[9]  H.V. Poor,et al.  Iterative multiuser detection , 2004, IEEE Signal Processing Magazine.

[10]  Tarek N. Saadawi,et al.  Performance analysis of spread spectrum packet radio network with channel load sensing , 1989, IEEE J. Sel. Areas Commun..

[11]  Li Ping,et al.  On interleave-division multiple-access , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[12]  M. K. Sust,et al.  Rapid acquisition concept for voice activated CDMA communication , 1990, [Proceedings] GLOBECOM '90: IEEE Global Telecommunications Conference and Exhibition.

[13]  Norman M. Abramson,et al.  THE ALOHA SYSTEM: another alternative for computer communications , 1899, AFIPS '70 (Fall).

[14]  Riccardo De Gaudenzi,et al.  Advances in Random Access protocols for satellite networks , 2009 .

[15]  Fernando Perez-Fontan,et al.  S-band LMS propagation channel behaviour for different environments, degrees of shadowing and elevation angles , 1998 .

[16]  Jason Neale,et al.  Terminal timing synchronisation in DVB-RCS systems using on-board NCR generation , 2001, Space Commun..

[17]  Maria Angeles Vázquez-Castro,et al.  Statistical modeling of the LMS channel , 2001, IEEE Trans. Veh. Technol..

[18]  G. Choudhury,et al.  Diversity ALOHA - A Random Access Scheme for Satellite Communications , 1983, IEEE Transactions on Communications.

[19]  Riccardo De Gaudenzi,et al.  Contention Resolution Diversity Slotted ALOHA (CRDSA): An Enhanced Random Access Schemefor Satellite Access Packet Networks , 2007, IEEE Transactions on Wireless Communications.

[20]  R. De Gaudenzi,et al.  High Efficiency Satellite Multiple Access Scheme for Machine-to-Machine Communications , 2012, IEEE Trans. Aerosp. Electron. Syst..

[21]  D. Wilcoxson,et al.  Ku-band SATCOM on-the move network , 2005, MILCOM 2005 - 2005 IEEE Military Communications Conference.

[22]  Gianluigi Liva,et al.  Graph-Based Analysis and Optimization of Contention Resolution Diversity Slotted ALOHA , 2011, IEEE Transactions on Communications.

[23]  Oscar del Rio Herrero,et al.  Spread-spectrum techniques for the provision of packet access on the reverse link of next-generation broadband multimedia satellite systems , 2004, IEEE Journal on Selected Areas in Communications.

[24]  Giovanni Emanuele Corazza On the MAX/TC criterion for code acquisition and its application to DS-SSMA systems , 1996, IEEE Trans. Commun..

[25]  R. De Gaudenzi,et al.  A high efficiency scheme for quasi-real-time satellite mobile messaging systems , 2008 .

[26]  Dimitri P. Bertsekas,et al.  Data Networks: Second Edition , 1992 .

[27]  R. De Gaudenzi,et al.  A high-performance MAC protocol for consumer broadband satellite systems , 2009 .

[28]  Giuseppe Caire,et al.  Maximizing the spectral efficiency of coded CDMA under successive decoding , 2004, IEEE Transactions on Information Theory.

[29]  I. M. Jacobs An overview of the OmniTRACS®: the first operational two-way mobile Ku-band satellite communications system , 1989 .

[30]  Dimitri P. Bertsekas,et al.  Data Networks , 1986 .

[31]  Srinivasan Keshav,et al.  An Engineering Approach to Computer Networking: ATM Networks , 1996 .

[32]  Marcel J. E. Golay,et al.  Complementary series , 1961, IRE Trans. Inf. Theory.

[33]  Pedro Velez-Belchi Interaction channel for satellite distribution systems , 2000 .

[34]  Peter A. Andrekson,et al.  Soliton transmission over more than 90 km using distributed erbium-doped fibres , 1995 .

[35]  Norman Abramson,et al.  The Throughput of Packet Broadcasting Channels , 1977, IEEE Trans. Commun..

[36]  S. Moshavi,et al.  Multi-user detection for DS-CDMA communications , 1996, IEEE Commun. Mag..