Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis

[1]  M. Irshad,et al.  Recent advances in green hydrogen production, storage and commercial-scale use via catalytic ammonia cracking , 2023, Chemical Engineering Journal.

[2]  S. Smart,et al.  Literature review of the catalytic pyrolysis of methane for hydrogen and carbon production , 2023, International Journal of Hydrogen Energy.

[3]  A. Alharthi,et al.  Cobalt ferrite for Direct Cracking of Methane to Produce Hydrogen and carbon nanostructure: Effect of temperature and methane flow rate , 2023, Journal of Saudi Chemical Society.

[4]  Seok-Jin Kim,et al.  Sintering-free catalytic ammonia cracking by vertically standing 2D porous framework supported Ru nanocatalysts , 2023, Chemical Engineering Journal.

[5]  E. Epelle,et al.  Process design, exergy, and economic assessment of a conceptual mobile autothermal methane pyrolysis unit for onsite hydrogen production , 2023, Energy Conversion and Management.

[6]  Seyed Mehdi Alavi,et al.  Influence of Various Spinel Materials Supported Ni Catalysts on Thermocatalytic Decomposition of Methane for the Production of Cox-Free Hydrogen , 2023, SSRN Electronic Journal.

[7]  Llewelyn Hughes,et al.  The role for offshore wind power in renewable hydrogen production , 2023, Journal of Cleaner Production.

[8]  Su Shiung Lam,et al.  Hydrogen sulfide (H2S) conversion to hydrogen (H2) and value-added chemicals: Progress, challenges and outlook , 2023, Chemical Engineering Journal.

[9]  M. Thomson,et al.  CO2-free hydrogen production via microwave-driven methane pyrolysis , 2023, International Journal of Hydrogen Energy.

[10]  Jarrett Riley,et al.  Investigation of methane and ethane pyrolysis with highly active and durable iron-alumina catalyst to produce hydrogen and valuable nano carbons: Continuous fluidized bed tests and reaction rate analysis , 2023, International Journal of Hydrogen Energy.

[11]  A. A. S. Lopes,et al.  Sustainability and challenges in hydrogen production: An advanced bibliometric analysis , 2022, International Journal of Hydrogen Energy.

[12]  E. Dames,et al.  An energy-efficient plasma methane pyrolysis process for high yields of carbon black and hydrogen , 2022, International Journal of Hydrogen Energy.

[13]  Hankwon Lim,et al.  An overview of water electrolysis technologies for green hydrogen production , 2022, Energy Reports.

[14]  D. Agar,et al.  Methane pyrolysis: Kinetic studies and mechanical removal of carbon deposits in reactors of different materials , 2022, International journal of hydrogen energy.

[15]  R. Liaquat,et al.  Methane decomposition for hydrogen production: A comprehensive review on catalyst selection and reactor systems , 2022, Renewable and Sustainable Energy Reviews.

[16]  M. Dusseault,et al.  A comprehensive review on hydrogen production and utilization in North America: Prospects and challenges , 2022, Energy Conversion and Management.

[17]  H. Antrekowitsch,et al.  Hydrogen production by methane pyrolysis in molten binary copper alloys , 2022, International Journal of Hydrogen Energy.

[18]  A. Gromov,et al.  Methane pyrolysis on sponge iron powder for sustainable hydrogen production , 2022, Results in Engineering.

[19]  S. Abanades,et al.  Experimental comparison of solar methane pyrolysis in gas-phase and molten-tin bubbling tubular reactors , 2022, Energy.

[20]  V. Hessel,et al.  Why turquoise hydrogen will Be a game changer for the energy transition , 2022, International Journal of Hydrogen Energy.

[21]  Z. Cai,et al.  Production of COx-Free Hydrogen and Few-Layer Graphene Nanoplatelets by Catalytic Decomposition of Methane over Ni-Lignin-Derived Nanoparticles , 2022, Molecules.

[22]  B. Michalkiewicz,et al.  Improved H2 yields over rice husk derived SiO2 nanoparticles supported Ni catalyst during non-oxidative methane cracking , 2021 .

[23]  F. Jing,et al.  Enhanced photocatalytic hydrogen production performance of pillararene-doped mesoporous TiO2 with extended visible-light response , 2021, Chinese Chemical Letters.

[24]  Hankwon Lim,et al.  Parametric Study for Thermal and Catalytic Methane Pyrolysis for Hydrogen Production: Techno-Economic and Scenario Analysis , 2021, Energies.

[25]  R. Schlögl,et al.  Methane Pyrolysis for Zero-Emission Hydrogen Production: A Potential Bridge Technology from Fossil Fuels to a Renewable and Sustainable Hydrogen Economy , 2021, Industrial & Engineering Chemistry Research.

[26]  Wei Weng,et al.  Catalytic decomposition of methane to produce hydrogen: A review , 2021, Journal of Energy Chemistry.

[27]  Jarrett Riley,et al.  Technoeconomic analysis for hydrogen and carbon Co-Production via catalytic pyrolysis of methane , 2021 .

[28]  Fereshteh Meshkani,et al.  Promotional roles of second metals in catalyzing methane decomposition over the Ni-based catalysts for hydrogen production: A critical review , 2021 .

[29]  H. Spliethoff,et al.  Low-carbon hydrogen production via electron beam plasma methane pyrolysis: Techno-economic analysis and carbon footprint assessment , 2021 .

[30]  K. Pant,et al.  Blue hydrogen and carbon nanotube production via direct catalytic decomposition of methane in fluidized bed reactor: Capture and extraction of carbon in the form of CNTs , 2021 .

[31]  K. Hellgardt,et al.  Methane pyrolysis in monovalent alkali halide salts: Kinetics and pyrolytic carbon properties , 2021 .

[32]  K. Hellgardt,et al.  Co-Mn catalysts for H2 production via methane pyrolysis in molten salts , 2021 .

[33]  E. Goetheer,et al.  Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment , 2020 .

[34]  Vineet Singh Sikarwar,et al.  Pyrolysis of methane via thermal steam plasma for the production of hydrogen and carbon black , 2020 .

[35]  K. Hellgardt,et al.  Molten salt bubble columns for low-carbon hydrogen from CH4 pyrolysis: Mass transfer and carbon formation mechanisms , 2020 .

[36]  S. Kabelac,et al.  Hydrogen production by methane decomposition: Analysis of thermodynamic carbon properties and process evaluation , 2020 .

[37]  Aurélio Reis da Costa Labanca Carbon black and hydrogen production process analysis , 2020, International Journal of Hydrogen Energy.

[38]  R. Schlögl,et al.  Methane Pyrolysis for CO 2 ‐Free H 2 Production: A Green Process to Overcome Renewable Energies Unsteadiness , 2020 .

[39]  F. Graf,et al.  State of the Art of Hydrogen Production via Pyrolysis of Natural Gas , 2020 .

[40]  G. Somorjai,et al.  Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect , 2020, Catalysts.

[41]  L. Catalan,et al.  Coupled hydrodynamic and kinetic model of liquid metal bubble reactor for hydrogen production by noncatalytic thermal decomposition of methane , 2020 .

[42]  E. McFarland,et al.  Catalytic methane pyrolysis in molten MnCl2-KCl , 2019, Applied Catalysis B: Environmental.

[43]  E. McFarland,et al.  Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts , 2019, Carbon.

[44]  L. Kostiuk,et al.  Experimental and numerical analysis of a methane thermal decomposition reactor , 2017 .

[45]  T. Løv̊as,et al.  Methane thermal decomposition in regenerative heat exchanger reactor: Experimental and modeling study , 2017 .

[46]  Yang Zhou,et al.  High quality syngas production from catalytic coal gasification using disposable Ca(OH)2 catalyst , 2017 .

[47]  Hazzim F. Abbas,et al.  Methane decomposition kinetics and reaction rate over Ni/SiO2 nanocatalyst produced through co-precipitation cum modified Stöber method , 2017 .

[48]  T. Butler,et al.  Methane cracking as a bridge technology to the hydrogen economy , 2017 .

[49]  André Bardow,et al.  Life cycle assessment of hydrogen production by thermal cracking of methane based on liquid-metal technology , 2016 .

[50]  R. K. Rathnam,et al.  Experimental investigation and thermo-chemical modeling of methane pyrolysis in a liquid metal bubble column reactor with a packed bed , 2015 .

[51]  S. Abanades,et al.  Kinetic investigation of carbon-catalyzed methane decomposition in a thermogravimetric solar reactor , 2015 .

[52]  R. K. Rathnam,et al.  Thermal cracking of methane in a liquid metal bubble column reactor: Experiments and kinetic analysis , 2015 .

[53]  Hazzim F. Abbas,et al.  Kinetics and deactivation mechanisms of the thermal decomposition of methane in hydrogen and carbon nanofiber Co-production over Ni-supported Y zeolite- based catalysts , 2014 .

[54]  Nesrin Ozalp,et al.  Kinetics and heat transfer analysis of carbon catalyzed solar cracking process , 2013 .

[55]  Pratibha Sharma,et al.  Effect of zeolites on thermal decomposition of ammonia borane , 2012 .

[56]  W. Epling,et al.  Reaction and Deactivation Rates of Methane Catalytic Cracking over Nickel , 2011 .

[57]  A. Rashidi,et al.  Kinetics of methane decomposition to COx-free hydrogen and carbon nanofiber over Ni–Cu/MgO catalyst , 2010 .

[58]  Carla E. Hori,et al.  Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane , 2010 .

[59]  Gilles Flamant,et al.  Hydrogen production from solar thermal dissociation of natural gas: development of a 10kW solar chemical reactor prototype , 2009 .

[60]  Hazzim F. Abbas,et al.  Thermocatalytic decomposition of methane using palm shell based activated carbon: Kinetic and deactivation studies , 2009 .

[61]  G. Flamant,et al.  Kinetic modelling of methane decomposition in a tubular solar reactor , 2009 .

[62]  Yadollah Saboohi,et al.  Numerical simulation of nano-carbon deposition in the thermal decomposition of methane , 2008 .

[63]  J. Pinilla,et al.  Kinetic study of the thermal decomposition of methane using carbonaceous catalysts , 2008 .

[64]  Gilles Flamant,et al.  Experimental study and modeling of a high-temperature solar chemical reactor for hydrogen production from methane cracking , 2007 .

[65]  Alan W. Weimer,et al.  Rapid Solar-thermal Decarbonization of Methane in a Fluid-wall Aerosol Flow Reactor -- Fundamentals and Application , 2007 .

[66]  G. Flamant,et al.  Solar hydrogen production from the thermal splitting of methane in a high temperature solar chemical reactor , 2006 .

[67]  N. Muradov,et al.  Catalytic activity of carbons for methane decomposition reaction , 2005 .

[68]  M. Nishikawa,et al.  Experimental study of cracking methane by Ni/SiO2 catalyst , 2004 .

[69]  S. Zein,et al.  Kinetic Studies on Catalytic Decomposition of Methane to Hydrogen and Carbon over Ni/TiO2 Catalyst , 2004 .

[70]  Aldo Steinfeld,et al.  Kinetic investigation of the thermal decomposition of CH4 by direct irradiation of a vortex-flow laden with carbon particles , 2004 .

[71]  M. Rezaei,et al.  Fabrication and evaluation of the Mn-promoted Ni/FeAl2O4 catalysts in the thermocatalytic decomposition of methane: Impact of various promoters , 2023, Fuel.

[72]  Margaritis Kostoglou,et al.  One-dimensional model of solar thermal reactors for the co-production of hydrogen and carbon black from methane decomposition , 2011 .

[73]  Nazim Muradov,et al.  THERMOCATALYTIC CO2- FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS , 2002 .

[74]  S. S. Kalanur,et al.  Enhanced efficiency in CO2-free hydrogen production from methane in a molten liquid alloy bubble column reactor with zirconia beads , 2022 .