PDE-constrained shape optimization: towards product shape spaces and stochastic models

Shape optimization models with one or more shapes are considered in this chapter. Of particular interest for applications are problems in which where a so-called shape functional is constrained by a partial differential equation (PDE) describing the underlying physics. A connection can made between a classical view of shape optimization and the differential-geometric structure of shape spaces. To handle problems where a shape functional depends on multiple shapes, a theoretical framework is presented, whereby the optimization variable can be represented as a vector of shapes belonging to a product shape space. The multi-shape gradient and multi-shape derivative are defined, which allows for a rigorous justification of a steepest descent method with Armijo backtracking. As long as the shapes as subsets of a hold-all domain do not intersect, solving a single deformation equation is enough to provide descent directions with respect to each shape. Additionally, a framework for handling uncertainties arising from inputs or parameters in the PDE is presented. To handle potentially high-dimensional stochastic spaces, a stochastic gradient method is proposed. A model problem is constructed, demonstrating how uncertainty can be introduced into the problem and the objective can be transformed by use of the expectation. Finally, numerical experiments in the deterministic and stochastic case are devised, which demonstrate the effectiveness of the presented algorithms.

[1]  D. Mumford,et al.  VANISHING GEODESIC DISTANCE ON SPACES OF SUBMANIFOLDS AND DIFFEOMORPHISMS , 2004, math/0409303.

[2]  D. Mumford,et al.  An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach , 2006, math/0605009.

[3]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[4]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[5]  D. Mumford,et al.  Riemannian Geometries on Spaces of Plane Curves , 2003, math/0312384.

[6]  Martin Bauer,et al.  Sobolev metrics on shape space of surfaces , 2010, 1211.3515.

[7]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[8]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[9]  V. Schulz,et al.  On Optimization Transfer Operators in Shape Spaces , 2018 .

[10]  V. Schulz,et al.  Pre-Shape Calculus: Foundations and Application to Mesh Quality Optimization , 2020, 2012.09124.

[11]  R. Herzog,et al.  A Manifold of Planar Triangular Meshes with Complete Riemannian Metric , 2020, ArXiv.

[12]  Ricardo H. Nochetto,et al.  Discrete gradient flows for shape optimization and applications , 2007 .

[13]  Martin Siebenborn,et al.  A Continuous Perspective on Shape Optimization via Domain Transformations , 2021, SIAM J. Sci. Comput..

[14]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[15]  Jesús Martínez-Frutos,et al.  Robust shape optimization of continuous structures via the level set method , 2016 .

[16]  Roland Herzog,et al.  First and Second Order Shape Optimization Based on Restricted Mesh Deformations , 2018, SIAM J. Sci. Comput..

[17]  B. O'neill Semi-Riemannian Geometry With Applications to Relativity , 1983 .

[18]  K. Sturm,et al.  Domain expression of the shape derivative and application to electrical impedance tomography , 2013 .

[19]  K. Sturm,et al.  Distributed shape derivative via averaged adjoint method and applications , 2015, 1509.01816.

[20]  Sean Hardesty,et al.  Shape Optimization for Control and Isolation of Structural Vibrations in Aerospace and Defense Applications. , 2020 .

[21]  Helmut Harbrecht,et al.  Shape Optimization for Quadratic Functionals and States with Random Right-Hand Sides , 2015, SIAM J. Control. Optim..

[22]  F. Nobile,et al.  Complexity Analysis of stochastic gradient methods for PDE-constrained optimal Control Problems with uncertain parameters , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[23]  W. Wollner,et al.  A Stochastic Gradient Method With Mesh Refinement for PDE-Constrained Optimization Under Uncertainty , 2019, SIAM J. Sci. Comput..

[24]  R. Hiptmair,et al.  Comparison of approximate shape gradients , 2014, BIT Numerical Mathematics.

[25]  Martin Siebenborn,et al.  Algorithmic Aspects of Multigrid Methods for Optimization in Shape Spaces , 2016, SIAM J. Sci. Comput..

[26]  Ulrich Langer,et al.  Shape Optimization of an Electric Motor Subject to Nonlinear Magnetostatics , 2015, SIAM J. Sci. Comput..

[27]  Grégoire Allaire,et al.  Shape optimization of a coupled thermal fluid–structure problem in a level set mesh evolution framework , 2019, SeMA Journal.

[28]  Martin Bauer,et al.  Sobolev Metrics on Shape Space, II: Weighted Sobolev Metrics and Almost Local Metrics , 2011 .

[29]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[30]  Helmut Harbrecht,et al.  Incorporating knowledge on the measurement noise in electrical impedance tomography , 2019, ESAIM: Control, Optimisation and Calculus of Variations.

[31]  Caroline Geiersbach,et al.  Projected Stochastic Gradients for Convex Constrained Problems in Hilbert Spaces , 2018, SIAM J. Optim..

[32]  Jean-Paul Zolésio,et al.  Control of Moving Domains, Shape Stabilization and Variational Tube Formulations , 2007 .

[33]  Kazufumi Ito,et al.  Variational approach to shape derivatives , 2008 .

[34]  VOLKER H. SCHULZ,et al.  Structured Inverse Modeling in Parabolic Diffusion Problems , 2015, SIAM J. Control. Optim..

[35]  Kazufumi Ito,et al.  Lagrange multiplier approach to variational problems and applications , 2008, Advances in design and control.

[36]  Martin Siebenborn,et al.  Mesh Quality Preserving Shape Optimization Using Nonlinear Extension Operators , 2020, Journal of Optimization Theory and Applications.

[37]  Ricardo H. Nochetto,et al.  A finite element method for surface diffusion: the parametric case , 2005 .

[38]  A. Paganini Approximate Shape Gradients for Interface Problems , 2015 .

[39]  Volker Schulz,et al.  Simultaneous Shape and Mesh Quality Optimization using Pre-Shape Calculus , 2021 .

[40]  LingHaibin,et al.  Shape Classification Using the Inner-Distance , 2007 .

[41]  Martin Siebenborn,et al.  Efficient PDE Constrained Shape Optimization Based on Steklov-Poincaré-Type Metrics , 2015, SIAM J. Optim..

[42]  Volker Schulz,et al.  A Riemannian View on Shape Optimization , 2012, Foundations of Computational Mathematics.

[43]  Ralf Hiptmair,et al.  Large deformation shape uncertainty quantification in acoustic scattering , 2018, Adv. Comput. Math..

[44]  Kevin Sturm Lagrange method in shape optimization for non-linear partial differential equations : A material derivative free approach , 2013 .

[45]  Ralf Hiptmair,et al.  Extension by zero in discrete trace spaces: Inverse estimates , 2015, Math. Comput..

[46]  Martin Siebenborn,et al.  Computational Comparison of Surface Metrics for PDE Constrained Shape Optimization , 2015, Comput. Methods Appl. Math..

[47]  Kathrin Welker Suitable Spaces for Shape Optimization , 2017, Applied Mathematics & Optimization.

[48]  Bert Jüttler,et al.  Shape Metrics Based on Elastic Deformations , 2009, Journal of Mathematical Imaging and Vision.

[49]  Martin Rumpf,et al.  A Nonlinear Elastic Shape Averaging Approach , 2009, SIAM J. Imaging Sci..

[50]  Ohin Kwon,et al.  Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm , 2002, IEEE Transactions on Biomedical Engineering.

[51]  M. Siebenborn,et al.  A shape optimization algorithm for cellular composites , 2019, 1904.03860.

[52]  Ricardo H. Nochetto,et al.  Adaptive finite element method for shape optimization , 2012 .

[53]  Ralf Hiptmair,et al.  Shape Optimization by Pursuing Diffeomorphisms , 2015, Comput. Methods Appl. Math..

[54]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .

[55]  Kevin Sturm Shape Optimization with Nonsmooth Cost Functions: From Theory to Numerics , 2016, SIAM J. Control. Optim..

[56]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[57]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[58]  Arian Novruzi,et al.  Structure of shape derivatives , 2002 .

[59]  Guillermo Sapiro,et al.  A Continuum Mechanical Approach to Geodesics in Shape Space , 2011, International Journal of Computer Vision.

[60]  Caroline Geiersbach,et al.  Stochastic approximation for optimization in shape spaces , 2021, SIAM J. Optim..

[61]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[62]  Martin Rumpf,et al.  Multiscale Joint Segmentation and Registration of Image Morphology , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  Fabio Nobile,et al.  MATHICSE Technical Report : A Multilevel Stochastic Gradient method for PDE-constrained Optimal Control Problems with uncertain parameters , 2018 .

[64]  Martin Berggren,et al.  A unified discrete-continuous sensitivity analysis method for shape optimization , 2010, CSC 2010.

[65]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[66]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[67]  P. Michor,et al.  The Convenient Setting of Global Analysis , 1997 .

[68]  A. Shapiro,et al.  Convergence analysis of gradient descent stochastic algorithms , 1996 .

[69]  Y. Wardi Stochastic algorithms with armijo stepsizes for minimization of functions , 1990 .

[70]  Caroline Geiersbach,et al.  Stochastic proximal gradient methods for nonconvex problems in Hilbert spaces , 2021, Comput. Optim. Appl..

[71]  Eldad Haber,et al.  An Effective Method for Parameter Estimation with PDE Constraints with Multiple Right-Hand Sides , 2012, SIAM J. Optim..

[72]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[73]  Dishi Liu,et al.  Quantification of Airfoil Geometry-Induced Aerodynamic Uncertainties - Comparison of Approaches , 2015, SIAM/ASA J. Uncertain. Quantification.

[74]  H. Robbins A Stochastic Approximation Method , 1951 .