Asynchronous variational integration using continuous assumed gradient elements

Highlights ► Presents asynchronous variational integrators in the context of finite elements with continuous assumed gradients. ► Illustrates an enhanced interpretation of the current space–time front. ► Provides a strategy for estimating the critical time step size using CAG elements, nodal integration or SFEM.

[1]  Eric P. Kasper,et al.  A mixed-enhanced strain method , 2000 .

[2]  Michael T. Heath,et al.  Asynchronous multi‐domain variational integrators for non‐linear problems , 2008 .

[3]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[4]  Adrian J. Lew,et al.  Parallel asynchronous variational integrators , 2007 .

[5]  Sebastian Wolff,et al.  A finite element method based on C0‐continuous assumed gradients , 2011 .

[6]  Mark O. Neal,et al.  Explicit-explicit subcycling with non-integer time step ratios for structural dynamic systems , 1989 .

[7]  Thomas J. R. Hughes,et al.  IMPLICIT-EXPLICIT FINITE ELEMENTS IN TRANSIENT ANALYSIS , 1978 .

[8]  Oubay Hassan,et al.  An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications , 2001 .

[9]  K. Y. Dai,et al.  A Smoothed Finite Element Method for Mechanics Problems , 2007 .

[10]  Guirong Liu,et al.  A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems , 2009 .

[11]  Alla Sheffer,et al.  Tent-Pitcher: A Meshing Algorithm for Space-Time Discontinuous Galerkin Methods , 2000, IMR.

[12]  J. Marsden,et al.  Variational time integrators , 2004 .

[13]  G. Liu A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part I theory , 2010 .

[14]  Clark R. Dohrmann,et al.  Uniform Strain Elements for Three-Node Triangular and Four-Node Tetrahedral Meshes , 1999 .

[15]  Matteo Focardi,et al.  Convergence of asynchronous variational integrators in linear elastodynamics , 2008 .

[16]  A. Lew Variational time integrators in computational solid mechanics , 2003 .

[17]  J. Marsden,et al.  Asynchronous Variational Integrators , 2003 .

[18]  Sebastian Wolff,et al.  Asynchronous collision integrators: Explicit treatment of unilateral contact with friction and nodal restraints , 2013, International journal for numerical methods in engineering.

[19]  Thomas J. R. Hughes,et al.  Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory , 1978 .

[20]  R. Courant,et al.  On the Partial Difference Equations, of Mathematical Physics , 2015 .

[21]  David Harmon,et al.  Asynchronous contact mechanics , 2009, SIGGRAPH 2009.

[22]  P. Smolinski Subcycling integration with non-integer time steps for structural dynamics problems , 1996 .

[23]  Robert L. Taylor,et al.  A mixed-enhanced strain method: Part II: Geometrically nonlinear problems , 2000 .

[24]  W. Daniel A study of the stability of subcycling algorithms in structural dynamics , 1998 .

[25]  J. Izaguirre Longer Time Steps for Molecular Dynamics , 1999 .

[26]  Petr Krysl,et al.  Locking‐free continuum displacement finite elements with nodal integration , 2008 .

[27]  Michal Beneš,et al.  Asynchronous multi-domain variational integrators for nonlinear hyperelastic solids , 2010 .

[28]  C. Bucher,et al.  Some Aspects when Applying Continuous Assumed Gradient Methods to Explicit Dynamics , 2012 .

[29]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..