Outdoor mapping and localization using satellite images

Recently, satellite images of most urban settings has become available on the internet. In this study, a novel mapping and global localization approach, which uses these images, is proposed for outdoor mobile robots operating in urban environment. The mapping of large-scale outdoor environments is done by employing the satellite images acquired by remote sensing technology, and then a map-based approach, that is, Monte Carlo localization is used for localization. The novelty of proposed method is that it uses standard equipment present on almost all autonomous robots and satellite images thus it acts as an alternative to GPS data in urban environments. Extensive field tests are presented to demonstrate the effectiveness of proposed approach.

[1]  Jacek M. Leski,et al.  Fuzzy and Neuro-Fuzzy Intelligent Systems , 2000, Studies in Fuzziness and Soft Computing.

[2]  Ingemar J. Cox,et al.  Autonomous Robot Vehicles , 1990, Springer New York.

[3]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[4]  Hugh F. Durrant-Whyte,et al.  Natural landmark-based autonomous vehicle navigation , 2004, Robotics Auton. Syst..

[5]  Favio R. Masson,et al.  Robust Navigation and Mapping Architecture for Large Environments , 2003, J. Field Robotics.

[6]  Ian Barnes,et al.  Aerial remote‐sensing techniques used in the management of archaeological monuments on the British Army's Salisbury Plain Training Area, Wiltshire, UK , 2003 .

[7]  Can Ulas Dogruer,et al.  A novel soft-computing technique to segment satellite images for mobile robot localization and navigation , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[9]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[10]  K. Lee,et al.  Use of remote sensing and geographical information systems to estimate green space surface-temperature change as a result of urban expansion , 2005, Landscape and Ecological Engineering.

[11]  Liqiang Feng,et al.  UMBmark: a benchmark test for measuring odometry errors in mobile robots , 1995, Other Conferences.

[12]  H. Durrant-Whyte,et al.  A sub-optimal algorithm for automatic map building , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[13]  Sebastian Thrun,et al.  Simultaneous localization and mapping with unknown data association using FastSLAM , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[14]  Ronald Parr,et al.  DP-SLAM: fast, robust simultaneous localization and mapping without predetermined landmarks , 2003, IJCAI 2003.

[15]  W. D. Striffler,et al.  APPLICATIONS OF REMOTE SENSING IN HYDROLOGY by , 2005 .

[16]  Eduardo Mario Nebot,et al.  Optimization of the simultaneous localization and map-building algorithm for real-time implementation , 2001, IEEE Trans. Robotics Autom..

[17]  Qihao Weng,et al.  Urban Air Pollution Patterns, Land Use, and Thermal Landscape: An Examination of the Linkage Using GIS , 2006, Environmental monitoring and assessment.

[18]  Robert J. Wood,et al.  Towards a 3g crawling robot through the integration of microrobot technologies , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[19]  José E. Guivant,et al.  Global urban localization based on road maps , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Can Ulas Dogruer,et al.  Global Urban Localization of an Outdoor Mobile Robot with Genetic Algorithms , 2008, EUROS.

[21]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[22]  N. R. Patel,et al.  Remote sensing of regional yield assessment of wheat in Haryana, India , 2006 .

[23]  Jane A. Elrod,et al.  Applications of Satellite Remote Sensing to Marine Pollution Studies , 1991 .

[24]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[25]  Stefan B. Williams,et al.  Map Management for Efficient Simultaneous Localization and Mapping (SLAM) , 2002, Auton. Robots.

[26]  Roland Siegwart,et al.  A relative map approach to SLAM based on shift and rotation invariants , 2007, Robotics Auton. Syst..

[27]  Hugh F. Durrant-Whyte,et al.  Simultaneous Mapping and Localization with Sparse Extended Information Filters: Theory and Initial Results , 2004, WAFR.

[28]  Anthony C. Janetos,et al.  Using Remote Sensing to Assess Russian Forest Fire Carbon Emissions , 2002 .

[29]  Roland Siegwart,et al.  Orthogonal SLAM: a Step toward Lightweight Indoor Autonomous Navigation , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[31]  Nasreen Islam Khan,et al.  Quantification of erosion patterns in the Brahmaputra–Jamuna River using geographical information system and remote sensing techniques , 2003 .

[32]  Can Ulas Dogruer,et al.  Global urban localization of outdoor mobile robots using satellite images , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Joy McCorriston,et al.  Mapping the roots of agriculture in southern Arabia: the application of satellite remote sensing, global positioning system and geographic information system technologies , 2002 .

[34]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[35]  Eduardo Mario Nebot,et al.  DenseSLAM: Simultaneous Localization and Dense Mapping , 2006, Int. J. Robotics Res..

[36]  Jyoti Sarup,et al.  Study of tectonics in relation to the seismic activity of the Dalvat area, Nasik District, Maharashtra, India using remote sensing and GIS techniques , 2006 .

[37]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[38]  Sebastian Thrun,et al.  FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges , 2003, IJCAI.

[39]  Ronald Parr,et al.  Hierarchical Linear/Constant Time SLAM Using Particle Filters for Dense Maps , 2005, NIPS.

[40]  N. Nathan Self and will , 1997 .

[41]  Gamini Dissanayake,et al.  D-SLAM: A Decoupled Solution to Simultaneous Localization and Mapping , 2007, Int. J. Robotics Res..

[42]  Christopher J. Watts,et al.  The use of remote sensing for estimating ET of irrigated wheat and cotton in Northwest Mexico , 2005 .

[43]  Eduardo Mario Nebot,et al.  Localization and map building using laser range sensors in outdoor applications , 2000, J. Field Robotics.

[44]  J. Yen,et al.  Fuzzy Logic: Intelligence, Control, and Information , 1998 .

[45]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[46]  Nazzareno Pierdicca,et al.  Satellite radar and optical remote sensing for earthquake damage detection: results from different case studies , 2006 .

[47]  Juan D. Tardós,et al.  Data association in stochastic mapping using the joint compatibility test , 2001, IEEE Trans. Robotics Autom..

[48]  Ronald Parr,et al.  DP-SLAM 2.0 , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[49]  Favio R. Masson,et al.  Navigation and Mapping in Large Unstructured Environments , 2004, Int. J. Robotics Res..

[50]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[51]  Dieter Fox,et al.  Adapting the Sample Size in Particle Filters Through KLD-Sampling , 2003, Int. J. Robotics Res..

[52]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[53]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[54]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[55]  Juan D. Tardós,et al.  Hierarchical SLAM: real-time accurate mapping of large environments , 2005, IEEE Transactions on Robotics.

[56]  Dieter Fox,et al.  Markov localization - a probabilistic framework for mobile robot localization and navigation , 1998 .