Numerical treatment of nonlinear MHD Jeffery–Hamel problems using stochastic algorithms

[1]  Junaid Ali Khan,et al.  Novel Approach for a van der Pol Oscillator in the Continuous Time Domain , 2011 .

[2]  Junaid Ali Khan,et al.  Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations , 2011 .

[3]  Manoj Kumar,et al.  Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: A survey , 2011, Comput. Math. Appl..

[4]  Oluwole Daniel Makinde,et al.  Effect of arbitrary magnetic Reynolds number on MHD flows in convergent‐divergent channels , 2008 .

[5]  Ji-Huan He A coupling method of a homotopy technique and a perturbation technique for non-linear problems , 2000 .

[6]  Raja Muhammad Asif Zahoor,et al.  Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu problem , 2012, Neural Computing and Applications.

[7]  Junaid Ali Khan,et al.  Solution of Fractional Order System of Bagley-Torvik Equation Using Evolutionary Computational Intelligence , 2011 .

[8]  M. Babaelahi,et al.  Three analytical methods applied to Jeffery-Hamel flow , 2010 .

[9]  Hanif D. Sherali,et al.  Complementarity Active-Set Algorithm for Mathematical Programming Problems with Equilibrium Constraints , 2007 .

[10]  Nicolae Herisanu,et al.  An Optimal Homotopy Asymptotic Approach Applied to Nonlinear MHD Jeffery-Hamel Flow , 2011 .

[11]  Raja Muhammad Asif Zahoor,et al.  A new stochastic approach for solution of Riccati differential equation of fractional order , 2010, Annals of Mathematics and Artificial Intelligence.

[12]  D. Ganji,et al.  Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method , 2012 .

[13]  M. Famouri,et al.  The application of homotopy analysis method to solve nonlinear differential equation governing Jeffery–Hamel flow , 2009 .

[14]  Sadegh Poozesh,et al.  MHD Flow of an Incompressible Viscous Fluid through Convergent or Divergent Channels in Presence of a High Magnetic Field , 2012, J. Appl. Math..

[15]  Soheil Soleimani,et al.  Application of homotopy analysis method to solve MHD Jeffery-Hamel flows in non-parallel walls , 2011, Adv. Eng. Softw..

[16]  Raja Muhammad Asif Zahoor,et al.  Numerical treatment of nonlinear Emden–Fowler equation using stochastic technique , 2011, Annals of Mathematics and Artificial Intelligence.

[17]  M. Hosseini,et al.  Homotopy perturbation method for nonlinear MHD Jeffery-Hamel problem , 2011, Comput. Math. Appl..

[18]  G. B. Jeffery L. THE TWO-DIMENSIONAL STEADY MOTION OF A VISCOUS FLUID , 2009 .

[19]  Davood Domiri Ganji,et al.  An approximation of the analytical solution of the Jeffery–Hamel flow by decomposition method , 2008 .

[20]  Ya-Xiang Yuan,et al.  Optimization Theory and Methods: Nonlinear Programming , 2010 .

[21]  S. Abbasbandy,et al.  Exact analytical solution of the MHD Jeffery-Hamel flow problem , 2012 .

[22]  Raja Muhammad Asif Zahoor,et al.  Numerical treatment for solving one-dimensional Bratu problem using neural networks , 2012, Neural Computing and Applications.

[23]  Reliable treatments of differential transform method for two-dimensional incompressible viscous flow through slowly expanding or contracting porous walls with small-to-moderate permeability , 2012 .

[24]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[25]  A. D. McQuillan,et al.  Correlation between magnetic susceptibility and hydrogen solubility in alloys of early transition elements , 1961 .

[26]  Z. Z. Ganji,et al.  Numerical and analytical approaches to MHD Jeffery‐Hamel flow in a porous channel , 2012 .

[27]  Davood Domiri Ganji,et al.  Study on nonlinear Jeffery-Hamel flow by He's semi-analytical methods and comparison with numerical results , 2009, Comput. Math. Appl..

[28]  Raja Muhammad Asif Zahoor,et al.  Numerical treatment for nonlinear MHD Jeffery-Hamel problem using neural networks optimized with interior point algorithm , 2014, Neurocomputing.

[29]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[30]  G. B. J. M. B.Sc. L. The two-dimensional steady motion of a viscous fluid , 1915 .

[31]  Scott W. Sloan,et al.  A steepest edge active set algorithm for solving sparse linear programming problems , 1988 .

[32]  F. G. Awad,et al.  A new spectral-homotopy analysis method for the MHD Jeffery-Hamel problem , 2010 .

[33]  D. Parisi,et al.  Solving differential equations with unsupervised neural networks , 2003 .

[34]  Jianjun Wang,et al.  A steganographic method based upon JPEG and particle swarm optimization algorithm , 2007, Inf. Sci..

[35]  Ricardo de A. Araújo Swarm-based translation-invariant morphological prediction method for financial time series forecasting , 2010, Inf. Sci..

[36]  Muhammad Asif Zahoor Raja,et al.  Unsupervised neural networks for solving Troesch's problem , 2013 .

[37]  Ji-Huan He Homotopy perturbation technique , 1999 .

[38]  Davood Domiri Ganji,et al.  Solution of the Jeffery-Hamel flow problem by optimal homotopy asymptotic method , 2010, Comput. Math. Appl..

[39]  Hadi Sadoghi Yazdi,et al.  Unsupervised adaptive neural-fuzzy inference system for solving differential equations , 2010, Appl. Soft Comput..

[40]  William W. Hager,et al.  A New Active Set Algorithm for Box Constrained Optimization , 2006, SIAM J. Optim..

[41]  W. Axford THE MAGNETOHYDRODYNAMIC JEFFREY-HAMEL PROBLEM FOR A WEAKLY CONDUCTING FLUID , 1961 .

[42]  S. N. Sivanandam,et al.  Multiprocessor Scheduling Using Hybrid Particle Swarm Optimization with Dynamically Varying Inertia , 2007, Int. J. Comput. Sci. Appl..

[43]  Alaeddin Malek,et al.  Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques , 2009, J. Frankl. Inst..

[44]  Ji-Huan He Variational iteration method – a kind of non-linear analytical technique: some examples , 1999 .