Injectivity of a class of integral operators with compactly supported kernels

Injectivity of integral operators is related to completeness conditions of their corresponding kernel functions. Completeness provides a useful way of obtaining nonparametric identification in various models including nonparametric regression models with instrumental variables, nonclassical measurement error models, and auction models, etc. However, the condition is quite abstract for empirical work and lacks a proper economic interpretation. We rely on known results regarding the Volterra equation to provide sufficient conditions for completeness conditions for densities with compact support. Our conditions include various smoothness assumptions and monotonously moving support assumptions on the kernel function of the operator. We apply our results to establish nonparametric identification in nonparametric IV regression models, nonclassical measurement error models, and auction models with an accessible interpretation and without specific functional form restrictions.

[1]  Yingyao Hu,et al.  NONPARAMETRIC IDENTIFICATION USING INSTRUMENTAL VARIABLES: SUFFICIENT CONDITIONS FOR COMPLETENESS , 2011, Econometric Theory.

[2]  Victor Chernozhukov,et al.  Instrumental variable estimation of nonseparable models , 2007 .

[3]  Yingyao Hu,et al.  Well-posedness of measurement error models for self-reported data , 2009 .

[4]  D. Andrews,et al.  Examples of L2-Complete and Boundedly-Complete Distributions , 2011 .

[5]  Yingyao Hu,et al.  Identification of first-price auctions with non-separable unobserved heterogeneity , 2011 .

[6]  Yingyao Hu,et al.  Estimating first-price auctions with an unknown number of bidders: A misclassification approach , 2010 .

[7]  J. Florens,et al.  Nonparametric Instrumental Regression , 2010 .

[8]  P. Hall,et al.  Nonparametric methods for inference in the presence of instrumental variables , 2003, math/0603130.

[9]  Pål Børing Gamma Unobserved Heterogeneity and Duration Bias , 2009 .

[10]  Xavier D'Haultfoeuille,et al.  ON THE COMPLETENESS CONDITION IN NONPARAMETRIC INSTRUMENTAL PROBLEMS , 2010, Econometric Theory.

[11]  Xavier D’Haultfœuille,et al.  Identification of Mixture Models Using Support Variations , 2015 .

[12]  M. Shum,et al.  Nonparametric identification of dynamic models with unobserved state variables , 2008 .

[13]  J. Horowitz Applied Nonparametric Instrumental Variables Estimation , 2011 .

[14]  Peter E. Rossi Arnold Zellner, 1927–2010 , 2011, Econometric Theory.

[15]  Xiaohong Chen,et al.  Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions , 2003 .

[16]  Azeem M. Shaikh,et al.  On the Testability of Identification in Some Nonparametric Models With Endogeneity , 2012 .

[17]  Xiaohong Chen,et al.  Semi‐Nonparametric IV Estimation of Shape‐Invariant Engel Curves , 2003 .

[18]  L. Mattner,et al.  Some incomplete but boundedly complete location families , 1993 .

[19]  Quang Vuong,et al.  Conditionally independent private information in OCS wildcat auctions , 2000 .

[20]  Yingyao Hu,et al.  Identification and estimation of nonlinear dynamic panel data models with unobserved covariates , 2013 .

[21]  Xiaohong Chen,et al.  Identification and Inference of Nonlinear Models Using Two Samples with Aribrary Measurement Errors , 2006 .

[22]  Joel L. Horowitz,et al.  Nonparametric Instrumental Variables Estimation of a Quantile Regression Model , 2006 .

[23]  M. Bôcher,et al.  An Introduction to the Study of Integral Equations , 1909, Nature.

[24]  On Deconvolution as a First Stage Nonparametric Estimator , 2005 .

[25]  W. Newey,et al.  Instrumental variable estimation of nonparametric models , 2003 .

[26]  Yingyao Hu,et al.  Identification and estimation of nonlinear models using two samples with nonclassical measurement errors , 2010, Journal of nonparametric statistics.

[27]  Susanne M. Schennach,et al.  Instrumental Variable Treatment of Nonclassical Measurement Error Models , 2008 .

[28]  V. Chernozhukov,et al.  An IV Model of Quantile Treatment Effects , 2002 .