Convergence in Infinitary Term Graph Rewriting Systems is Simple (Extended Abstract)

��������� � �� ���������� In this extended abstract, we present a simple approach to convergence on term graphs that allows us to unify term graph rewriting and infinitary term rewriting. This approach is based on a partial order and a metric on term graphs. These structures arise as straightforward generalisations of the corresponding structures used in infinitary term rewriting. We compare our simple approach to a more complicated approach that we developed earlier and show that this new approach is superior in many ways. The only unfavourable property that we were able to identify, viz. failure of full correspondence between weak metric and partial order convergence, is rectified by adopting a strong convergence discipline.

[1]  Simon Marlow,et al.  Haskell 2010 Language Report , 2010 .

[2]  Enno Ohlebusch,et al.  Term Rewriting Systems , 2002 .

[3]  Joseph A. Goguen,et al.  Initial Algebra Semantics and Continuous Algebras , 1977, J. ACM.

[4]  Stefan Blom,et al.  Skew confluence and the lambda calculus with letrec , 2002, Ann. Pure Appl. Log..

[5]  Jan Willem Klop,et al.  Term Graph Rewriting , 1995, HOA.

[6]  Patrick Bahr,et al.  Modes of Convergence for Term Graph Rewriting , 2012, Log. Methods Comput. Sci..

[7]  Bruno Courcelle,et al.  Fundamental Properties of Infinite Trees , 1983, Theor. Comput. Sci..

[8]  Richard Kennaway Infinitary rewriting and cyclic graphs , 1995, Electron. Notes Theor. Comput. Sci..

[9]  Zena M. Ariola,et al.  Lambda Calculus with Explicit Recursion , 1997, Inf. Comput..

[10]  Jan Willem Klop,et al.  Transfinite Reductions in Orthogonal Term Rewriting Systems , 1995, Inf. Comput..

[11]  Z. M. Ariola,et al.  Skew and ω-Skew Confluence and Abstract Böhm Semantics , 2005 .

[12]  Aart Middeldorp,et al.  Term Rewriting , 1999, CSL.

[13]  Gordon D. Plotkin,et al.  Concrete Domains , 1993, Theor. Comput. Sci..

[14]  Peter Henderson,et al.  A lazy evaluator , 1976, POPL.

[15]  Patrick Bahr Infinitary Term Graph Rewriting is Simple, Sound and Complete , 2012, RTA.

[16]  Marko C. J. D. van Eekelen,et al.  Term Graph Rewriting , 1987, PARLE.

[17]  Jan Willem Klop,et al.  On the adequacy of graph rewriting for simulating term rewriting , 1994, TOPL.

[18]  Simon L. Peyton Jones,et al.  The Implementation of Functional Programming Languages , 1987 .

[19]  J. R Kennaway On transfinite abstract reduction systems , 1992 .

[20]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[21]  John Hughes,et al.  Why Functional Programming Matters , 1989, Comput. J..

[22]  Patrick Bahr Partial Order Infinitary Term Rewriting and Böhm Trees , 2010, RTA.

[23]  Jean-Jacques Lévy,et al.  Minimal and optimal computations of recursive programs , 1977, JACM.

[24]  Marko C. J. D. van Eekelen,et al.  Functional Programming and Parallel Graph Rewriting , 1993 .

[25]  Patrick Bahr Partial Order Infinitary Term Rewriting , 2014, Log. Methods Comput. Sci..

[26]  Maurice Nivat,et al.  The metric space of infinite trees. Algebraic and topological properties , 1980, Fundam. Informaticae.

[27]  Nachum Dershowitz,et al.  Rewrite, rewrite, rewrite, rewrite, rewrite... , 1989, POPL '89.

[28]  Patrick Bahr Abstract Models of Transfinite Reductions , 2010, RTA.