Sequence Finishing and Mapping of Drosophila melanogaster Heterochromatin

Genome sequences for most metazoans and plants are incomplete because of the presence of repeated DNA in the heterochromatin. The heterochromatic regions of Drosophila melanogaster contain 20 million bases (Mb) of sequence amenable to mapping, sequence assembly, and finishing. We describe the generation of 15 Mb of finished or improved heterochromatic sequence with the use of available clone resources and assembly methods. We also constructed a bacterial artificial chromosome–based physical map that spans 13 Mb of the pericentromeric heterochromatin and a cytogenetic map that positions 11 Mb in specific chromosomal locations. We have approached a complete assembly and mapping of the nonsatellite component of Drosophila heterochromatin. The strategy we describe is also applicable to generating substantially more information about heterochromatin in other species, including humans.

[1]  D. Brutlag,et al.  Multiplicity of satellite DNA sequences in Drosophila melanogaster. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[2]  G. L. Miklos,et al.  The Eukaryote Genome in Development and Evolution , 1987, Springer Netherlands.

[3]  M. Gatti,et al.  Functional elements in Drosophila melanogaster heterochromatin. , 1992, Annual review of genetics.

[4]  S. Bonaccorsi,et al.  Looking at Drosophila mitotic chromosomes. , 1994, Methods in cell biology.

[5]  P. Weiss,et al.  Imaging Substrate-Mediated Interactions , 1996, Science.

[6]  G. Karpen,et al.  Centric Heterochromatin and the Efficiency of Achiasmate Disjunction in Drosophila Female Meiosis , 1996, Science.

[7]  D. Agard,et al.  Perturbation of Nuclear Architecture by Long-Distance Chromosome Interactions , 1996, Cell.

[8]  R. Wilson,et al.  High throughput fingerprint analysis of large-insert clones. , 1997, Genome research.

[9]  L. Wallrath,et al.  Unfolding the mysteries of heterochromatin. , 1998, Current opinion in genetics & development.

[10]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[11]  G M Rubin,et al.  A BAC-based physical map of the major autosomes of Drosophila melanogaster. , 2000, Science.

[12]  Gerald M Rubin,et al.  Heterochromatic sequences in a Drosophila whole-genome shotgun assembly , 2002, Genome Biology.

[13]  G. Karpen,et al.  Efficient recovery of centric heterochromatin P-element insertions in Drosophila melanogaster. , 2002, Genetics.

[14]  E. Myers,et al.  Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence , 2002, Genome Biology.

[15]  Piero Carninci,et al.  The Drosophila gene collection: identification of putative full-length cDNAs for 70% of D. melanogaster genes. , 2002, Genome research.

[16]  Ian Korf,et al.  BLAST - an essential guide to the basic local alignment search tool , 2003 .

[17]  G. Karpen,et al.  Genetics of P-element transposition into Drosophila melanogaster centric heterochromatin. , 2003, Genetics.

[18]  Feng Chen,et al.  A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac , 2004, Nature Genetics.

[19]  Kazutoyo Osoegawa,et al.  Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at telomeres. , 2004, Molecular biology and evolution.

[20]  G. Rubin,et al.  The BDGP Gene Disruption Project , 2004, Genetics.

[21]  Evan E. Eichler,et al.  An assessment of the sequence gaps: Unfinished business in a finished human genome , 2004, Nature Reviews Genetics.

[22]  Steven Henikoff,et al.  Spreading of silent chromatin: inaction at a distance , 2006, Nature Reviews Genetics.