Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions.

A new fluorescence sensor for the highly selective detection of Cu2+ ion with a detection limit of 3.6 nM based on the aggregation-induced fluorescence quenching of the highly fluorescent glutathione-capped gold nanoparticles is reported.

[1]  M. J. Adams,et al.  Determination of absolute fluorescence quantum efficiency of quinine bisulfate in aqueous medium by optoacoustic spectrometry , 1977 .

[2]  Peter P. Edwards,et al.  A new hydrosol of gold clusters. 1. Formation and particle size variation , 1993 .

[3]  R. Staples,et al.  Luminescence Studies of Gold(I) Thiolate Complexes , 1995 .

[4]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[5]  Jess P. Wilcoxon,et al.  Photoluminescence from nanosize gold clusters , 1998 .

[6]  Chun‐hsien Chen,et al.  Application of cysteine monolayers for electrochemical determination of sub-ppb copper(II) , 1999 .

[7]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[8]  C. Mirkin,et al.  Homogeneous, Nanoparticle-Based Quantitative Colorimetric Detection of Oligonucleotides , 2000 .

[9]  R. Whetten,et al.  Near-Infrared Luminescence from Small Gold Nanocrystals , 2000 .

[10]  Cheng,et al.  A Highly Soluble Luminescent Decanuclear Gold(I) Complex with a Propeller-Shaped Structure V.W.-W.Y. acknowledges financial support from the Research Grants Council and The University of Hong Kong. E.C.-C.C. acknowledges the receipt of a postgraduate studentship (1997-1999) and a Croucher Foundation , 2000, Angewandte Chemie.

[11]  R. Murray,et al.  Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters , 2001 .

[12]  Joseph T. Hupp,et al.  Gold Nanoparticle-Based Sensing of “Spectroscopically Silent” Heavy Metal Ions , 2001 .

[13]  M. El-Sayed,et al.  Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster , 2002 .

[14]  Sui Lin,et al.  Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles. , 2002, Analytical chemistry.

[15]  Robert L. Whetten,et al.  Visible to Infrared Luminescence from a 28-Atom Gold Cluster , 2002 .

[16]  Z. Rosenzweig,et al.  Luminescent CdS quantum dots as selective ion probes. , 2002, Analytical chemistry.

[17]  Catherine J. Murphy,et al.  Sensing strategy for lithium ion based on gold nanoparticles , 2002 .

[18]  R. Dickson,et al.  High quantum yield blue emission from water-soluble Au8 nanodots. , 2003, Journal of the American Chemical Society.

[19]  Xingyao Zhou,et al.  Voltammetry and EQCM Investigation of Glutathione Monolayer and Its Complexation with Cu2 , 2003 .

[20]  George C Schatz,et al.  What controls the melting properties of DNA-linked gold nanoparticle assemblies? , 2000, Journal of the American Chemical Society.

[21]  Juewen Liu,et al.  Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. , 2004, Journal of the American Chemical Society.

[22]  R. Dickson,et al.  Highly fluorescent, water-soluble, size-tunable gold quantum dots. , 2004, Physical review letters.

[23]  Y. Negishi,et al.  Visible photoluminescence from nearly monodispersed Au12 clusters protected by meso-2,3-dimercaptosuccinic acid , 2004 .

[24]  Robert Pansu,et al.  Metal-chelating nanoparticles as selective fluorescent sensor for Cu2+. , 2004, Chemical communications.

[25]  Huixiang Li,et al.  Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Itamar Willner,et al.  Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. , 2004, Angewandte Chemie.

[27]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[28]  K. G. Thomas,et al.  Selective detection of cysteine and glutathione using gold nanorods. , 2005, Journal of the American Chemical Society.

[29]  Juewen Liu,et al.  Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. , 2005, Angewandte Chemie.

[30]  Chao-Tsen Chen,et al.  Gold nanoparticle-based competitive colorimetric assay for detection of protein-protein interactions. , 2005, Chemical communications.

[31]  Yi Lu,et al.  Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. , 2005, Journal of the American Chemical Society.

[32]  Y. Li,et al.  Gold Nanoparticle‐Based Fluorometric and Colorimetric Sensing of Copper(II) Ions , 2005 .

[33]  V. Pérez-Luna,et al.  Dextran-gold nanoparticle hybrid material for biomolecule immobilization and detection. , 2005, Analytical chemistry.

[34]  Gangli Wang,et al.  NIR luminescence intensities increase linearly with proportion of polar thiolate ligands in protecting monolayers of Au38 and Au140 quantum dots. , 2006, The journal of physical chemistry. B.

[35]  Zhenxin Wang,et al.  Kinase-catalyzed modification of gold nanoparticles: a new approach to colorimetric kinase activity screening. , 2006, Journal of the American Chemical Society.

[36]  V. De Filippis,et al.  Gold nanoparticles-based protease assay. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Robert C. Triulzi,et al.  Immunoasssay based on the antibody-conjugated PAMAM-dendrimer-gold quantum dot complex. , 2006, Chemical communications.

[38]  Jennifer S. Martinez,et al.  Nanoparticle Free Synthesis of Fluorescent Gold Nanoclusters at Physiological Temperature , 2007, MRS Online Proceedings Library.

[39]  Zusing Yang,et al.  Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). , 2007, Angewandte Chemie.

[40]  C. Tung,et al.  Sensing phosphatase activity by using gold nanoparticles. , 2007, Angewandte Chemie.

[41]  X. Liu,et al.  A Gold Nanoparticle‐Based Aptamer Target Binding Readout for ATP Assay , 2007 .

[42]  Chad A Mirkin,et al.  Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. , 2007, Angewandte Chemie.

[43]  Rongrong Liu,et al.  A simple and specific assay for real-time colorimetric visualization of beta-lactamase activity by using gold nanoparticles. , 2007, Angewandte Chemie.

[44]  C. Mirkin,et al.  A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. , 2007, Angewandte Chemie.

[45]  S. Nie,et al.  Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters. , 2007, Journal of the American Chemical Society.

[46]  Juewen Liu,et al.  Colorimetric Cu2+ detection with a ligation DNAzyme and nanoparticles. , 2007, Chemical communications.

[47]  M. Stevens,et al.  Protease-triggered dispersion of nanoparticle assemblies. , 2007, Journal of the American Chemical Society.

[48]  Wensheng Shi,et al.  Silicon nanowires-based fluorescence sensor for Cu(II). , 2008, Nano letters.

[49]  Itamar Willner,et al.  Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. , 2008, Angewandte Chemie.

[50]  Nai-Tzu Chen,et al.  Ligand exchanged photoluminescent gold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging. , 2008, Chemical communications.