MODELING SEVEN YEARS OF EVENT HORIZON TELESCOPE OBSERVATIONS WITH RADIATIVELY INEFFICIENT ACCRETION FLOW MODELS

An initial three-station version of the Event Horizon Telescope, a millimeter-wavelength very-long baseline interferometer, has observed Sagittarius A* (Sgr A*) repeatedly from 2007 to 2013, resulting in the measurement of a variety of interferometric quantities. Of particular importance, there is now a large set of closure phases, measured over a number of independent observing epochs. We analyze these observations within the context of a realization of semi-analytic radiatively inefficient disk models, implicated by the low luminosity of Sgr A*. We find a broad consistency among the various observing epochs and between different interferometric data types, with the latter providing significant support for this class of models of Sgr A*. The new data significantly tighten existing constraints on the spin magnitude and its orientation within this model context, finding a spin magnitude of $a=0.10^{+0.30+0.56}_{-0.10-0.10}$, an inclination with respect to the line of sight of $\theta={60^\circ}^{+5^\circ+10^\circ}_{-8^\circ-13^\circ}$, and a position angle of $\xi={156^\circ}^{+10^\circ+14^\circ}_{-17^\circ-27^\circ}$ east of north. These are in good agreement with previous analyses. Notably, the previous $180^\circ$ degeneracy in the position angle has now been conclusively broken by the inclusion of the closure phase measurements. A reflection degeneracy in the inclination remains, permitting two localizations of the spin vector orientation, one of which is in agreement with the orbital angular momentum of the infrared gas cloud G2 and the clockwise disk of young stars. This possibly supports a relationship between Sgr A*'s accretion flow and these larger-scale features.

[1]  M. Morris,et al.  EVIDENCE FOR A PARSEC-SCALE JET FROM THE GALACTIC CENTER BLACK HOLE: INTERACTION WITH LOCAL GAS , 2013, 1310.0146.

[2]  J. M. Moran,et al.  Interferometric Measurements of Variable 340 GHz Linear Polarization in Sagittarius A* , 2005, astro-ph/0511653.

[3]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[4]  Yuri Levin Starbursts near supermassive black holes: young stars in the Galactic Centre, and gravitational waves in LISA band , 2007 .

[5]  E. Agol Sgr A* Polarization: No ADAF, Low Accretion Rate, and Non-Thermal Synchrotron Emission , 2000, astro-ph/0005051.

[6]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[7]  J. Cuadra,et al.  Dissecting X-ray–Emitting Gas Around the Center of Our Galaxy , 2013, Science.

[8]  Radiative transfer along rays in curved space–times , 2005, astro-ph/0511515.

[9]  H. Falcke,et al.  The Intrinsic Size of Sagittarius A* from 0.35 to 6 cm , 2006, astro-ph/0608004.

[10]  S. Trippe,et al.  EVIDENCE FOR WARPED DISKS OF YOUNG STARS IN THE GALACTIC CENTER , 2008, 0811.3903.

[11]  Mike McCourt,et al.  Going with the flow: using gas clouds to probe the accretion flow feeding Sgr A* , 2015, 1503.04801.

[12]  Michael D. Johnson,et al.  THEORY AND SIMULATIONS OF REFRACTIVE SUBSTRUCTURE IN RESOLVED SCATTER-BROADENED IMAGES , 2015, 1502.05722.

[13]  R. Narayan,et al.  The shape of a scatter-broadened image. II: Interferometric visibilities , 1989 .

[14]  Adam Deller,et al.  THE ANGULAR BROADENING OF THE GALACTIC CENTER PULSAR SGR J1745-29: A NEW CONSTRAINT ON THE SCATTERING MEDIUM , 2013, 1309.4672.

[15]  E.P.S. Shellard,et al.  Shape of primordial non-Gaussianity and the CMB bispectrum , 2008, 0812.3413.

[16]  Abraham Loeb,et al.  THE EVENT HORIZON OF SAGITTARIUS A* , 2009, 0903.1105.

[17]  A. S. Johnson,et al.  THE SPECTRUM AND MORPHOLOGY OF THE FERMI BUBBLES , 2014 .

[18]  E. Barausse The evolution of massive black holes and their spins in their galactic hosts , 2012, 1201.5888.

[19]  Alan E. E. Rogers,et al.  PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES , 2016, 1602.05527.

[20]  J. Dexter,et al.  OBSERVATIONAL SIGNATURES OF TILTED BLACK HOLE ACCRETION DISKS FROM SIMULATIONS , 2011, 1101.3783.

[21]  A. Loeb,et al.  CONSTRAINING THE STRUCTURE OF SAGITTARIUS A*'s ACCRETION FLOW WITH MILLIMETER VERY LONG BASELINE INTERFEROMETRY CLOSURE PHASES , 2011, 1106.2550.

[22]  A. Loeb,et al.  MEASURING THE DIRECTION AND ANGULAR VELOCITY OF A BLACK HOLE ACCRETION DISK VIA LAGGED INTERFEROMETRIC COVARIANCE , 2015, 1505.07870.

[23]  A. Liddle,et al.  Information criteria for astrophysical model selection , 2007, astro-ph/0701113.

[24]  R. Narayan,et al.  The shape of a scatter-broadened image – I. Numerical simulations and physical principles , 1989 .

[25]  Jessica R. Lu,et al.  A DISK OF YOUNG STARS AT THE GALACTIC CENTER AS DETERMINED BY INDIVIDUAL STELLAR ORBITS , 2008, 0808.3818.

[26]  Andrea Merloni,et al.  THE EVOLUTION OF ACTIVE GALACTIC NUCLEI AND THEIR SPINS , 2012, 1210.1025.

[27]  D. Finkbeiner,et al.  GIANT GAMMA-RAY BUBBLES FROM FERMI-LAT: ACTIVE GALACTIC NUCLEUS ACTIVITY OR BIPOLAR GALACTIC WIND? , 2010, 1005.5480.

[28]  O. Blaes,et al.  Global General Relativistic Magnetohydrodynamic Simulation of a Tilted Black Hole Accretion Disk , 2007, 0706.4303.

[29]  Reinhard Genzel,et al.  The galactic center massive black hole and nuclear star cluster , 2010, 1006.0064.

[30]  Daniel J. Price,et al.  TEARING UP THE DISK: HOW BLACK HOLES ACCRETE , 2012, 1209.1393.

[31]  A. Loeb,et al.  EVENT HORIZON TELESCOPE EVIDENCE FOR ALIGNMENT OF THE BLACK HOLE IN THE CENTER OF THE MILKY WAY WITH THE INNER STELLAR DISK , 2014, 1409.5447.

[32]  The Submillimeter Polarization of Sgr A , 2006, astro-ph/0607432.

[33]  Victor Pankratius,et al.  IMAGING AN EVENT HORIZON: MITIGATION OF SCATTERING TOWARD SAGITTARIUS A* , 2014, 1409.4690.

[34]  J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.

[35]  Canadian Institute for Theoretical Astrophysics,et al.  DETECTING FLARING STRUCTURES IN SAGITTARIUS A* WITH HIGH-FREQUENCY VLBI , 2008, 0809.3424.

[36]  CMB 3-point functions generated by nonlinearities at recombination , 2004, astro-ph/0405428.

[37]  Raúl Rueda,et al.  Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica Support by P. C. Gregory. Hardcover: 486 pages. Cambridge University Press. ISBN: 052184150X, $75.00 , 2007 .

[38]  M. Wright,et al.  1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES , 2010, 1011.2472.

[39]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[40]  Alan E. E. Rogers,et al.  DETECTING CHANGING POLARIZATION STRUCTURES IN SAGITTARIUS A* WITH HIGH FREQUENCY VLBI , 2009 .

[41]  P. Anninos,et al.  Hydrodynamic Simulations of Tilted Thick-Disk Accretion onto a Kerr Black Hole , 2004, astro-ph/0403356.

[42]  Philip C. Gregory,et al.  Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .

[43]  Ramesh Narayan,et al.  Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A* , 2003, astro-ph/0304125.

[44]  Ryan M. O'Leary,et al.  Using gas clouds to probe the accretion flow around Sgr A*: G2's delayed pericentre passage , 2016, 1602.02760.

[45]  Application of the Information Criterion to the Estimation ofGalaxy Luminosity Function , 1999, astro-ph/9909324.

[46]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica® Support , 2005 .

[47]  A. Loeb,et al.  TESTING THE NO-HAIR THEOREM WITH EVENT HORIZON TELESCOPE OBSERVATIONS OF SAGITTARIUS A* , 2013, 1311.5564.

[48]  Hyperstrong Radio-Wave Scattering in the Galactic Center. II. A Likelihood Analysis of Free Electrons in the Galactic Center , 1998, astro-ph/9804157.

[49]  R. Narayan,et al.  On the Nature of the Compact Dark Mass at the Galactic Center , 2005, astro-ph/0512211.

[50]  Geoffrey C. Bower,et al.  Interferometric Detection of Linear Polarization from Sagittarius A* at 230 GHz , 2003, astro-ph/0302227.

[51]  E. Agol Sagittarius A* Polarization: No Advection-dominated Accretion Flow, Low Accretion Rate, and Nonthermal Synchrotron Emission , 2000 .

[52]  Covariant magnetoionic theory – II. Radiative transfer , 2003, astro-ph/0311360.

[53]  Holland,et al.  Detection of Polarized Millimeter and Submillimeter Emission from Sagittarius A* , 2000, The Astrophysical journal.

[54]  M. F. Radioastronomie,et al.  The Proper Motion of Sagittarius A*. II. The Mass of Sagittarius A* , 2004, astro-ph/0408107.

[55]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: The how-to of Bayesian inference , 2005 .

[56]  N. Gehrels,et al.  SWIFT DISCOVERY OF A NEW SOFT GAMMA REPEATER, SGR J1745−29, NEAR SAGITTARIUS A* , 2013, 1305.2128.

[57]  Andreas Burkert,et al.  THE GALACTIC CENTER CLOUD G2 AND ITS GAS STREAMER , 2014 .

[58]  J. Bardeen,et al.  The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes , 1975 .

[59]  R. Genzel,et al.  THE ORBIT OF THE STAR S2 AROUND SGR A* FROM VERY LARGE TELESCOPE AND KECK DATA , 2009, 0910.3069.

[60]  The Distribution and cosmic evolution of massive black hole spins , 2004, astro-ph/0410342.

[61]  Harvard,et al.  EVIDENCE FOR LOW BLACK HOLE SPIN AND PHYSICALLY MOTIVATED ACCRETION MODELS FROM MILLIMETER-VLBI OBSERVATIONS OF SAGITTARIUS A* , 2010, 1011.2770.