An informative subset-based estimator for censored quantile regression

[1]  Jing Wang,et al.  Distribution function estimation by constrained polynomial spline regression , 2010 .

[2]  Lan Wang,et al.  Locally Weighted Censored Quantile Regression , 2009 .

[3]  R. Koenker Censored Quantile Regression Redux , 2008 .

[4]  Peter Winker,et al.  Improving the computation of censored quantile regressions , 2007, Comput. Stat. Data Anal..

[5]  Lingzhi Zhou,et al.  A simple censored median regression estimator , 2006 .

[6]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .

[7]  Xiaohong Chen,et al.  Estimation of Semiparametric Models When the Criterion Function is Not Smooth , 2002 .

[8]  James L. Powell,et al.  Two-step estimation of semiparametric censored regression models , 2001 .

[9]  Guohua Pan,et al.  Local Regression and Likelihood , 1999, Technometrics.

[10]  Stefan Sperlich,et al.  Generalized Additive Models , 2014 .

[11]  Jinyong Hahn,et al.  An Alternative Estimator for the Censored Quantile Regression Model , 1998 .

[12]  Bernd Fitzenberger,et al.  Computational aspects of censored quantile regression , 1997 .

[13]  Bernd Fitzenberger,et al.  A Guide to Censored Quantile Regressions , 1997 .

[14]  Q. Shao,et al.  A general bahadur representation of M-estimators and its application to linear regression with nonstochastic designs , 1996 .

[15]  N. Altman An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression , 1992 .

[16]  R. Koenker,et al.  An interior point algorithm for nonlinear quantile regression , 1996 .

[17]  C. J. Stone,et al.  Additive Regression and Other Nonparametric Models , 1985 .

[18]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .