An informative subset-based estimator for censored quantile regression
暂无分享,去创建一个
[1] Jing Wang,et al. Distribution function estimation by constrained polynomial spline regression , 2010 .
[2] Lan Wang,et al. Locally Weighted Censored Quantile Regression , 2009 .
[3] R. Koenker. Censored Quantile Regression Redux , 2008 .
[4] Peter Winker,et al. Improving the computation of censored quantile regressions , 2007, Comput. Stat. Data Anal..
[5] Lingzhi Zhou,et al. A simple censored median regression estimator , 2006 .
[6] Stephen Portnoy,et al. Censored Regression Quantiles , 2003 .
[7] Xiaohong Chen,et al. Estimation of Semiparametric Models When the Criterion Function is Not Smooth , 2002 .
[8] James L. Powell,et al. Two-step estimation of semiparametric censored regression models , 2001 .
[9] Guohua Pan,et al. Local Regression and Likelihood , 1999, Technometrics.
[10] Stefan Sperlich,et al. Generalized Additive Models , 2014 .
[11] Jinyong Hahn,et al. An Alternative Estimator for the Censored Quantile Regression Model , 1998 .
[12] Bernd Fitzenberger,et al. Computational aspects of censored quantile regression , 1997 .
[13] Bernd Fitzenberger,et al. A Guide to Censored Quantile Regressions , 1997 .
[14] Q. Shao,et al. A general bahadur representation of M-estimators and its application to linear regression with nonstochastic designs , 1996 .
[15] N. Altman. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression , 1992 .
[16] R. Koenker,et al. An interior point algorithm for nonlinear quantile regression , 1996 .
[17] C. J. Stone,et al. Additive Regression and Other Nonparametric Models , 1985 .
[18] C. J. Stone,et al. Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .