Three-dimensional SnS2 nanopetals for hybrid sodium-air batteries

[1]  X. Sun,et al.  Dual–phase Spinel MnCo2O4 Nanocrystals with Nitrogen-doped Reduced Graphene Oxide as Potential Catalyst for Hybrid Na–Air Batteries , 2017 .

[2]  Hyunhyub Ko,et al.  Redox‐Additive‐Enhanced High Capacitance Supercapacitors Based on Co2P2O7 Nanosheets , 2017 .

[3]  Hyunhyub Ko,et al.  Carambola-shaped VO2 nanostructures: a binder-free air electrode for an aqueous Na–air battery , 2017 .

[4]  C. Li,et al.  A Multifunction Lithium–Carbon Battery System Using a Dual Electrolyte , 2017 .

[5]  Zaiping Guo,et al.  p-Type SnO thin layers on n-type SnS2 nanosheets with enriched surface defects and embedded charge transfer for lithium ion batteries , 2017 .

[6]  M. Pumera,et al.  Layered SnS versus SnS2: Valence and Structural Implications on Electrochemistry and Clean Energy Electrocatalysis , 2016 .

[7]  Soo Min Hwang,et al.  Hierarchical urchin-shaped α-MnO 2 on graphene-coated carbon microfibers: a binder-free electrode for rechargeable aqueous Na–air battery , 2016 .

[8]  Hyunhyub Ko,et al.  Exploration of cobalt phosphate as a potential catalyst for rechargeable aqueous sodium-air battery , 2016 .

[9]  H. Jeong,et al.  Graphitic Nanoshell/Mesoporous Carbon Nanohybrids as Highly Efficient and Stable Bifunctional Oxygen Electrocatalysts for Rechargeable Aqueous Na–Air Batteries , 2016 .

[10]  Qiang Fu,et al.  Catalysis with two-dimensional materials and their heterostructures. , 2016, Nature nanotechnology.

[11]  S. T. Senthilkumar,et al.  Rechargeable aqueous Na–air batteries: Highly improved voltage efficiency by use of catalysts , 2015 .

[12]  Hyunhyub Ko,et al.  Highly porous graphitic carbon and Ni2P2O7 for a high performance aqueous hybrid supercapacitor , 2015 .

[13]  Yao Zheng,et al.  Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. , 2015, Chemical Society reviews.

[14]  Christopher S. Johnson,et al.  Rechargeable Seawater Battery and Its Electrochemical Mechanism , 2015 .

[15]  Qian Sun,et al.  Self-stacked nitrogen-doped carbon nanotubes as long-life air electrode for sodium-air batteries: Elucidating the evolution of discharge product morphology , 2015 .

[16]  Jun Chen,et al.  Porous perovskite calcium–manganese oxide microspheres as an efficient catalyst for rechargeable sodium–oxygen batteries , 2015 .

[17]  Z. Wen,et al.  Graphene nanosheets loaded with Pt nanoparticles with enhanced electrochemical performance for sodium–oxygen batteries , 2015 .

[18]  Hong Li,et al.  A long-life Na-air battery based on a soluble NaI catalyst. , 2015, Chemical communications.

[19]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[20]  Héctor D. Abruña,et al.  A rechargeable Na–CO2/O2 battery enabled by stable nanoparticle hybrid electrolytes , 2014 .

[21]  Lynden A. Archer,et al.  Sodium–oxygen batteries: a new class of metal–air batteries , 2014 .

[22]  Seongmin Ha,et al.  Sodium-metal halide and sodium-air batteries. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  Haoshen Zhou,et al.  High capacity Na–O2 batteries with carbon nanotube paper as binder-free air cathode , 2014 .

[24]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[25]  Xueliang Sun,et al.  Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium-air batteries. , 2013, Chemical communications.

[26]  K. Scott,et al.  Modelling the micro–macro homogeneous cycling behaviour of a lithium–air battery , 2013 .

[27]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[28]  Yiying Wu,et al.  A low-overpotential potassium-oxygen battery based on potassium superoxide. , 2013, Journal of the American Chemical Society.

[29]  A. Manthiram,et al.  Polyprotic acid catholyte for high capacity dual-electrolyte Li-air batteries. , 2012, Physical chemistry chemical physics : PCCP.

[30]  Yi Xie,et al.  Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. , 2012, Angewandte Chemie.

[31]  P. Shen,et al.  Hydrothermal growth of SnS2 hollow spheres and their electrochemical properties , 2012 .

[32]  Ziyauddin Khan,et al.  Hierarchical 3D NiO–CdS heteroarchitecture for efficient visible light photocatalytic hydrogen generation , 2012 .

[33]  Arumugam Manthiram,et al.  A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte , 2012 .

[34]  Chao Yu,et al.  3D-hierarchical SnS2 micro/nano-structures: controlled synthesis, formation mechanism and lithium ion storage performances , 2012 .

[35]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[36]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[37]  Yunhua Xu,et al.  Self-assembly of SnS2 submicron-sized flakes to form microspheres under template-free hydrothermal conditions , 2010 .

[38]  Tao Zhang,et al.  Stability of a Water-Stable Lithium Metal Anode for a Lithium–Air Battery with Acetic Acid–Water Solutions , 2010 .

[39]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[40]  Arumugam Manthiram,et al.  Nanostructured electrode materials for electrochemical energy storage and conversion , 2008 .

[41]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[42]  Takashi Kuboki,et al.  Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte , 2005 .

[43]  M. Akinc,et al.  Synthesis of Nickel Sulfide Powders by Thioacetamide in the Presence of Urea , 2005 .

[44]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[45]  D. Peters,et al.  Hydrolysis Reactions of Thioacetamide in Aqueous Solutions , 1958 .

[46]  Katsuro Hayashi,et al.  A High-Energy-Density Mixed-Aprotic-Aqueous Sodium-Air Cell with a Ceramic Separator and a Porous Carbon Electrode , 2015 .

[47]  Nobuyuki Imanishi,et al.  Rechargeable lithium–air batteries: characteristics and prospects , 2014 .

[48]  Gareth P. Keeley,et al.  A comparative study on gold and platinum dissolution in acidic and alkaline media , 2014 .

[49]  K. Hayashi,et al.  A Mixed Aqueous/Aprotic Sodium/Air Cell Using a NASICON Ceramic Separator , 2013 .