Multi-camera Realtime 3D Tracking of Multiple Flying Animals

Automated tracking of animal movement allows analyses that would not otherwise be possible by providing great quantities of data. The additional capability of tracking in realtime - with minimal latency - opens up the experimental possibility of manipulating sensory feedback, thus allowing detailed explorations of the neural basis for control of behavior. Here we describe a new system capable of tracking the position and body orientation of animals such as flies and birds. The system operates with less than 40 msec latency and can track multiple animals simultaneously. To achieve these results, a multi target tracking algorithm was developed based on the Extended Kalman Filter and the Nearest Neighbor Standard Filter data association algorithm. In one implementation, an eleven camera system is capable of tracking three flies simultaneously at 60 frames per second using a gigabit network of nine standard Intel Pentium 4 and Core 2 Duo computers. This manuscript presents the rationale and details of the algorithms employed and shows three implementations of the system. An experiment was performed using the tracking system to measure the effect of visual contrast on the flight speed of Drosophila melanogaster. At low contrasts, speed is more variable and faster on average than at high contrasts. Thus, the system is already a useful tool to study the neurobiology and behavior of freely flying animals. If combined with other techniques, such as `virtual reality'-type computer graphics or genetic manipulation, the tracking system would offer a powerful new way to investigate the biology of flying animals.

[1]  K E Weber,et al.  Aerial performance of Drosophila melanogaster from populations selected for upwind flight ability. , 1997, The Journal of experimental biology.

[2]  Judy Stamps,et al.  Genotypic differences in space use and movement patterns in Drosophila melanogaster , 2005, Animal Behaviour.

[3]  M. Dickinson,et al.  Free-flight responses of Drosophila melanogaster to attractive odors , 2006, Journal of Experimental Biology.

[4]  H. Wagner Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) II. Pursuit of targets , 1986 .

[5]  G. Parisi,et al.  New statistical tools for analyzing the structure of animal groups. , 2008, Mathematical biosciences.

[6]  Michael H. Dickinson,et al.  TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies , 2008, Journal of Neuroscience Methods.

[7]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[8]  M. Srinivasan,et al.  Spatial processing of visual information in the movement-detecting pathway of the fly , 2004, Journal of comparative physiology.

[9]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[10]  Hateren,et al.  Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics , 1999, The Journal of experimental biology.

[11]  A. Biewener,et al.  Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). I. Kinematic and neuromuscular control of turning , 2007, Journal of Experimental Biology.

[12]  Mandyam V. Srinivasan,et al.  Honeybee navigation: properties of the visually driven `odometer' , 2003, Journal of Experimental Biology.

[13]  Mandyam V. Srinivasan,et al.  The contrast sensitivity of fly movement-detecting neurons , 1980, Vision Research.

[14]  Simon Tavaré,et al.  O fly, where art thou? , 2008, Journal of The Royal Society Interface.

[15]  Svetha Venkatesh,et al.  How honeybees make grazing landings on flat surfaces , 2000, Biological Cybernetics.

[16]  J. P. Lindemann,et al.  Function of a Fly Motion-Sensitive Neuron Matches Eye Movements during Free Flight , 2005, PLoS biology.

[17]  M. Srinivasan,et al.  Visual control of flight speed in honeybees , 2005, Journal of Experimental Biology.

[18]  T. Collett,et al.  How hoverflies compute interception courses , 1978, Journal of comparative physiology.

[19]  A. Borst,et al.  Transient and steady-state response properties of movement detectors. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[20]  C. David Compensation for height in the control of groundspeed byDrosophila in a new, ‘barber's pole’ wind tunnel , 1982, Journal of comparative physiology.

[21]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[22]  Titus R. Neumann Modeling Insect Compound Eyes: Space-Variant Spherical Vision , 2002, Biologically Motivated Computer Vision.

[23]  K. Breuer,et al.  Direct measurements of the kinematics and dynamics of bat flight , 2006, Bioinspiration & biomimetics.

[24]  C. Wehrhahn,et al.  Sex-specific differences in the chasing behaviour of houseflies (Musca) , 1979, Biological Cybernetics.

[25]  Andrew D. Straw,et al.  Vision Egg: an Open-Source Library for Realtime Visual Stimulus Generation , 2008, Frontiers Neuroinformatics.

[26]  Robert A. Harris,et al.  Contrast Gain Reduction in Fly Motion Adaptation , 2000, Neuron.

[27]  Frank Dellaert,et al.  MCMC-based particle filtering for tracking a variable number of interacting targets , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Peter F. Sturm,et al.  A Factorization Based Algorithm for Multi-Image Projective Structure and Motion , 1996, ECCV.

[29]  Dan Schonfeld,et al.  Distributed Bayesian Multiple-Target Tracking in Crowded Environments Using Multiple Collaborative Cameras , 2007, EURASIP J. Adv. Signal Process..

[30]  Michael H. Dickinson,et al.  Integrative Model of Drosophila Flight , 2008 .

[31]  Tomás Svoboda,et al.  A Convenient Multicamera Self-Calibration for Virtual Environments , 2005, Presence: Teleoperators & Virtual Environments.

[32]  G. F. McLean,et al.  Line-Based Correction of Radial Lens Distortion , 1997, CVGIP Graph. Model. Image Process..

[33]  T. Poggio,et al.  3-D Analysis of the Flight Trajectories of Flies (Drosophila melanogaster) , 1980 .

[34]  Daniel J. Klein Coordinated control and estimation for multi-agent systems: Theory and practice , 2008 .

[35]  Y. Bar-Shalom Tracking and data association , 1988 .

[36]  T. Collett,et al.  Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.

[37]  Giorgio Parisi,et al.  The STARFLAG handbook on collective animal behaviour: 1. Empirical methods , 2008, Animal Behaviour.

[38]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[39]  Michael H. Dickinson,et al.  Motmot, an open-source toolkit for realtime video acquisition and analysis , 2009, Source Code for Biology and Medicine.

[40]  S. Zhang,et al.  Evidence for two distinct movement-detecting mechanisms in insect vision , 2005, Naturwissenschaften.

[41]  S. N. Fry,et al.  Context-dependent stimulus presentation to freely moving animals in 3D , 2004, Journal of Neuroscience Methods.

[42]  G. Parisi,et al.  Empirical investigation of starling flocks: a benchmark study in collective animal behaviour , 2008, Animal Behaviour.

[43]  Dan Schonfeld,et al.  Real-time interactively distributed multi-object tracking using a magnetic-inertia potential model , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[44]  R. Strauss,et al.  Processing of artificial visual feedback in the walking fruit fly Drosophila melanogaster. , 1997, The Journal of experimental biology.

[45]  C. David The relationship between body angle and flight speed in free‐flying Drosophila , 1978 .

[46]  Michael H Dickinson,et al.  Odor localization requires visual feedback during free flight in Drosophila melanogaster , 2003, Journal of Experimental Biology.

[47]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[48]  H. M. Karara,et al.  Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry , 2015 .

[49]  M. Srinivasan,et al.  Range perception through apparent image speed in freely flying honeybees , 1991, Visual Neuroscience.

[50]  M. Branicky,et al.  Design Considerations for Software Only Implementations of the IEEE 1588 Precision Time Protocol , 2005 .

[51]  Leonard J. Gray,et al.  Three Dimensional Analysis , 2008 .

[52]  Graham K. Taylor,et al.  The Typical Flight Performance of Blowflies: Measuring the Normal Performance Envelope of Calliphora vicina Using a Novel Corner-Cube Arena , 2009, PloS one.

[53]  Michael H. Dickinson,et al.  A Simple Vision-Based Algorithm for Decision Making in Flying Drosophila , 2008, Current Biology.

[54]  S. N. Fry,et al.  The Aerodynamics of Free-Flight Maneuvers in Drosophila , 2003, Science.

[55]  Giorgio Parisi,et al.  The STARFLAG handbook on collective animal behaviour: 2. Three-dimensional analysis , 2008, Animal Behaviour.

[56]  Qi Zhao,et al.  Acquiring 3D motion trajectories of large numbers of swarming animals , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[57]  Frank Dellaert,et al.  MCMC Data Association and Sparse Factorization Updating for Real Time Multitarget Tracking with Merged and Multiple Measurements , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Tomaso Poggio,et al.  Tracking and chasing in houseflies (Musca) , 1982, Biological Cybernetics.

[59]  Qi Zhao,et al.  Reconstructing 3D motion trajectories of particle swarms by global correspondence selection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[60]  J. Zeil,et al.  Recording and reconstructing three-dimensional trajectories: a versatile method for the field biologist , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[61]  J. Kennedy The Visual Responses of Flying Mosquitoes. , 2009 .

[62]  Kate O'Rourke Animal tracking. , 2003, Journal of the American Veterinary Medical Association.

[63]  Pietro Perona,et al.  High-throughput Ethomics in Large Groups of Drosophila , 2009, Nature Methods.