Sample and Pixel Weighting Strategies for Robust Incremental Visual Tracking

In this paper, we introduce the incremental temporally weighted principal component analysis (ITWPCA) algorithm, based on singular value decomposition update, and the incremental temporally weighted visual tracking with spatial penalty (ITWVTSP) algorithm for robust visual tracking. ITWVTSP uses ITWPCA for computing incrementally a robust low dimensional subspace representation (model) of the tracked object. The robustness is based on the capacity of weighting the contribution of each single sample to the subspace generation to reduce the impact of bad quality samples, reducing the risk of model drift. Furthermore, ITWVTSP can exploit the a priori knowledge about important regions of a tracked object. This is done by penalizing the tracking error on some predefined regions of the tracked object, which increases the accuracy of tracking. Several tests are performed on several challenging video sequences, showing the robustness and accuracy of the proposed algorithm, as well as its superiority with respect to state-of-the-art techniques.

[1]  Emilio Maggio,et al.  Video Tracking - Theory and Practice , 2011 .

[2]  Stanley T. Birchfield,et al.  Spatiograms versus histograms for region-based tracking , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[3]  Dariu Gavrila,et al.  Monocular Pedestrian Detection: Survey and Experiments , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Ralph R. Martin,et al.  Incremental Eigenanalysis for Classification , 1998, BMVC.

[5]  Daniela Iacoviello,et al.  Robust real time eye tracking for computer interface for disabled people , 2009, Comput. Methods Programs Biomed..

[6]  F. Xavier Roca,et al.  Reactive Object Tracking with a Single PTZ Camera , 2010, 2010 20th International Conference on Pattern Recognition.

[7]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[8]  Hans-Peter Kriegel,et al.  A General Framework for Increasing the Robustness of PCA-Based Correlation Clustering Algorithms , 2008, SSDBM.

[9]  Tieniu Tan,et al.  A real-time object detecting and tracking system for outdoor night surveillance , 2008, Pattern Recognit..

[10]  Yuji Iwahori,et al.  Efficient Tracking with AdaBoost and Particle Filter under Complicated Background , 2008, KES.

[11]  David J. Kriegman,et al.  Visual tracking and recognition using probabilistic appearance manifolds , 2005, Comput. Vis. Image Underst..

[12]  Mohammed Yeasin,et al.  Robust tracking of human body parts for collaborative human computer interaction , 2003, Comput. Vis. Image Underst..

[13]  Jake K. Aggarwal,et al.  A hierarchical Bayesian network for event recognition of human actions and interactions , 2004, Multimedia Systems.

[14]  Stan Sclaroff,et al.  Layered graphical models for tracking partially-occluded objects , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Andrew Blake,et al.  Sparse Bayesian learning for efficient visual tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Marie Lachaise,et al.  Traffic monitoring with serial images from airborne cameras , 2006 .

[17]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[18]  Joseph L. Mundy,et al.  Object Recognition in the Geometric Era: A Retrospective , 2006, Toward Category-Level Object Recognition.

[19]  Zhi Liu,et al.  Mean shift blob tracking with kernel histogram filtering and hypothesis testing , 2005, Pattern Recognit. Lett..

[20]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Rama Chellappa,et al.  Visual tracking and recognition using appearance-adaptive models in particle filters , 2004, IEEE Transactions on Image Processing.

[22]  Luca Schenato,et al.  Distributed perimeter patrolling and tracking for camera networks , 2010, 49th IEEE Conference on Decision and Control (CDC).

[23]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[24]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  RisticBranko,et al.  A particle filter for joint detection and tracking of color objects , 2007 .

[27]  Serge J. Belongie,et al.  Context based object categorization: A critical survey , 2010, Comput. Vis. Image Underst..

[28]  Yong Chen,et al.  Robust principal component analysis and outlier detection with ecological data , 2004 .

[29]  J. C. Mota Model-based Behavioural Tracking and Scale Invariant Features in Omnidirectional Matching , 2011 .

[30]  Hai Jin,et al.  Adaptive Object Tracking by Learning Hybrid Template Online , 2011, IEEE Transactions on Circuits and Systems for Video Technology.

[31]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[32]  Luc Van Gool,et al.  Robust tracking-by-detection using a detector confidence particle filter , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[33]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Horst Bischof,et al.  Weighted and robust learning of subspace representations , 2007, Pattern Recognit..

[36]  Michael Lindenbaum,et al.  Sequential Karhunen-Loeve basis extraction and its application to images , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[37]  M. Brand,et al.  Fast low-rank modifications of the thin singular value decomposition , 2006 .

[38]  Kosmas Dimitropoulos,et al.  Video sensor network for real-time traffic monitoring and surveillance , 2010 .

[39]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[40]  Yuan F. Zheng,et al.  Sequential Particle Generation for Visual Tracking , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[41]  Danijel Skocaj,et al.  Incremental and robust learning of subspace representations , 2008, Image Vis. Comput..

[42]  Hamid Aghajan,et al.  Special issue on multi-camera and multi-modal sensor fusion , 2010, Comput. Vis. Image Underst..

[43]  David Gerónimo Gómez,et al.  Survey of Pedestrian Detection for Advanced Driver Assistance Systems , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Mia Hubert,et al.  ROBPCA: A New Approach to Robust Principal Component Analysis , 2005, Technometrics.

[45]  Zhang Yi,et al.  A New Incremental PCA Algorithm With Application to Visual Learning and Recognition , 2009, Neural Processing Letters.

[46]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[47]  Kwang-Seok Hong,et al.  Finger gesture-based mobile user interface using a rear-facing camera , 2011, 2011 IEEE International Conference on Consumer Electronics (ICCE).

[48]  Emilio Maggio,et al.  Efficient Multitarget Visual Tracking Using Random Finite Sets , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[49]  Touradj Ebrahimi,et al.  Combination of video-based camera trackers using a dynamically adapted particle filter , 2007, VISAPP.

[50]  David J. Fleet,et al.  Robust online appearance models for visual tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[51]  Antonis A. Argyros,et al.  Multiple objects tracking in the presence of long-term occlusions , 2010, Comput. Vis. Image Underst..

[52]  Branko Ristic,et al.  A particle filter for joint detection and tracking of color objects , 2007, Image Vis. Comput..

[53]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[54]  Mia Hubert,et al.  Computational Statistics and Data Analysis Robust Pca for Skewed Data and Its Outlier Map , 2022 .

[55]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.