Impact of microalgae characteristics on their conversion to biofuel. Part II: Focus on biomethane production

Among biofuel production processes using microalgal biomass, biogas generation seems to be the least complex. This review summarizes information regarding anaerobic digestion of different microalgae species. Various operational parameters and microalgae characteristics (macromolecular distribution and cell wall) are reviewed in the light of their effects on methane production. Additionally, the enhancement of methane production rates achievable by applying biomass pre-treatments and codigestion of substrates is also reported. The review finally covers the so-claimed similarities of microalgal biomass and activated sludge as a substrate for anaerobic digestion. © 2011 Society of Chemical Industry and John Wiley & Sons Ltd

[1]  Jinwon Lee,et al.  Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. , 2009, Journal of microbiology and biotechnology.

[2]  G. Wikfors Altering growth and gross chemical composition of two microalgal molluscan food species by varying nitrate and phosphate , 1986 .

[3]  G. Carrington,et al.  Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass , 2009 .

[4]  Olivier Bernard,et al.  Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. , 2009, Biotechnology advances.

[5]  U. Neis,et al.  Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[6]  W. Wieser,et al.  The suitability of frozen and freeze-dried zooplankton as food for fish larvae: A biochemical test program , 1981 .

[7]  Stefan Schouten,et al.  Molecular structure of the resistant biopolymer in zygospore cell walls of Chlamydomonas monoica , 1999, Planta.

[8]  A. Andreadakis PHYSICAL AND CHEMICAL PROPERTIES OF ACTIVATED SLUDGE FLOC , 1993 .

[9]  M. Wang,et al.  Microalgae Growth Using High‐Strength Wastewater Followed by Anaerobic Co‐Digestion , 2012, Water environment research : a research publication of the Water Environment Federation.

[10]  Biomacromolecules of Algae and Plants and their Fossil Analogues , 2006 .

[11]  Hong-Wei Yen,et al.  Anaerobic co-digestion of algal sludge and waste paper to produce methane. , 2007, Bioresource Technology.

[12]  R. Samson,et al.  Improved performance of anaerobic digestion ofSpirulinamaxima algal biomass by addition of carbon-rich wastes , 1983, Biotechnology Letters.

[13]  B. Parker,et al.  Biochemical composition of three algal species proposed as food for captive freshwater mussels , 2004, Journal of Applied Phycology.

[14]  Beatriz Molinuevo-Salces,et al.  Open and enclosed photobioreactors comparison in terms of organic matter utilization, biomass chemical profile and photosynthetic efficiency , 2010 .

[15]  K. Dam-Johansen,et al.  Effects of Substrate Loading on Enzymatic Hydrolysis and Viscosity of Pretreated Barley Straw , 2007, Applied biochemistry and biotechnology.

[16]  A. Donoso-Bravo,et al.  Assessment of the influence of thermal pre-treatment time on the macromolecular composition and anaerobic biodegradability of sewage sludge. , 2011, Bioresource technology.

[17]  Xiaohui Xu,et al.  Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. International Journal of Hydrogen Energy , 2010 .

[18]  Rui M. F. Bezerra,et al.  Discrimination among eight modified michaelis-menten kinetics models of cellulose hydrolysis with a large range of substrate/enzyme ratios , 2004, Applied biochemistry and biotechnology.

[19]  Márcia C. M. R. Leal,et al.  Effect of enzymatic hydrolysis on anaerobic treatment of dairy wastewater , 2006 .

[20]  Xiaohui Xu,et al.  Hydrogen and methane production from lipid-extracted microalgal biomass residues , 2011 .

[21]  Adriana Artola,et al.  Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions , 2007 .

[22]  Mark R Prausnitz,et al.  Mechanism of intracellular delivery by acoustic cavitation. , 2006, Ultrasound in medicine & biology.

[23]  Kenji Imou,et al.  Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery , 2010 .

[24]  A. Malej,et al.  Inhibition Of Copepod Grazing By Diatom Exudates - A Factor In The Development Of Mucus Aggregates , 1993 .

[25]  H. Takeda Cell wall sugars of some Scenedesmus species , 1996 .

[26]  C. G. Carrington,et al.  Anaerobic digestion of microalgae residues resulting from the biodiesel production process , 2011 .

[27]  J. Blanco,et al.  Biomass production and variation in the biochemical profile (total protein, carbohydrates, RNA, lipids and fatty acids) of seven species of marine microalgae , 1989 .

[28]  H. B. Gotaas,et al.  Anaerobic digestion of Algae. , 1957, Applied microbiology.

[29]  A. Leduy,et al.  Cultivation of spirulina maxima in an annular photochemical reactor , 1979 .

[30]  H. Carrère,et al.  Pretreatment methods to improve sludge anaerobic degradability: a review. , 2010, Journal of hazardous materials.

[31]  Hilary M. Lappin-Scott,et al.  Simultaneous Fluorescent Gram Staining and Activity Assessment of Activated Sludge Bacteria , 2002, Applied and Environmental Microbiology.

[32]  P. García-Encina,et al.  Different pretreatments for increasing the anaerobic biodegradability in swine manure. , 2008, Bioresource technology.

[33]  C. Lan,et al.  CO2 bio-mitigation using microalgae , 2008, Applied Microbiology and Biotechnology.

[34]  Beatriz Molinuevo-Salces,et al.  Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology , 2011 .

[35]  M. Prausnitz,et al.  Influence of the cell wall on intracellular delivery to algal cells by electroporation and sonication. , 2007, Ultrasound in medicine & biology.

[36]  K. S. Creamer,et al.  Inhibition of anaerobic digestion process: a review. , 2008, Bioresource technology.

[37]  R. Gonzalez,et al.  Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. , 2007, Current opinion in biotechnology.

[38]  S. Pavlostathis,et al.  Kinetics of anaerobic treatment: A critical review , 1991 .

[39]  J. A. Hellebust Mechanisms of response to salinity in halotolerant microalgae , 1985, Plant and Soil.

[40]  Razif Harun,et al.  Enzymatic hydrolysis of microalgal biomass for bioethanol production , 2011 .

[41]  E. Carpenter,et al.  Ultrastructure and Taxonomic Observations on Marine Isolates of the Genus Nannochloris (Chlorophyceae) , 1982 .

[42]  Y. Urade,et al.  Isolation, purification, and characterization of the pellicle of Euglena gracilis z. , 1987, Journal of biochemistry.

[43]  H. Oh,et al.  Comparison of several methods for effective lipid extraction from microalgae. , 2010, Bioresource technology.

[44]  Ziglio Giuliano,et al.  Effects of sonication on bacteria viability in wastewater treatment plants evaluated by flow cytometry--fecal indicators, wastewater and activated sludge. , 2007, Water research.

[45]  B. Allard,et al.  Occurrence of high molecular weight lipids (C80+) in the trilaminar outer cell walls of some freshwater microalgae. A reappraisal of algaenan structure , 2002 .

[46]  R. Moletta,et al.  Thermo-chemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability , 1999 .

[47]  Razif Harun,et al.  Exploring alkaline pre-treatment of microalgal biomass for bioethanol production , 2011 .

[48]  J. Tillberg,et al.  Physiological and structural effects of phosphorus starvation on the unicellular green alga Scenedesmus , 1989 .

[49]  Hsin-Hung Lin,et al.  Hydrolysis of Chlorella by Cellulomonas sp. YJ5 cellulases and its biofunctional properties. , 2010, Journal of food science.

[50]  B. Gunning,et al.  Sporopollenin in the cell wall of Chlorella and other algae: Ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures , 1972, Planta.

[51]  E. Jacob‐Lopes,et al.  Production and biochemical profile of the microalgae Aphanothece microscopica Nägeli submitted to different drying conditions , 2008 .

[52]  A. Hashimoto,et al.  Thermophilic and mesophilic methane production from anaerobic degradation of the cyanobacterium Spirulina maxima , 1988 .

[53]  L. Brown PHOTOSYNTHETIC AND GROWTH RESPONSES TO SALINITY IN A MARINE ISOLATE OF NANNOCHLORIS BACILLARIS (CHLOROPHYCEAE) 1 , 1982 .

[54]  N. Bernet,et al.  Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. , 2011, Bioresource technology.

[55]  H. Schierup,et al.  Release of extracellular organic carbon during a diatom bloom in Lake Mossö: molecular weight fractionation , 1982 .

[56]  W. Krumbein,et al.  Perforation patterns in the peptidoglycan wall of filamentous cyanobacteria , 2000 .

[57]  Hélène Carrère,et al.  Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge , 2007 .

[58]  E. P. S. Hernández,et al.  Anaerobic digestion of Chlorella vulgaris for energy production , 1993 .

[59]  H. Takeda SUGAR COMPOSITION OF THE CELL WALL AND THE TAXONOMY OF CHLORELLA (CHLOROPHYCEAE) 1 , 1991 .

[60]  Y. Carmeli,et al.  Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II: Nannochloropsis sp. , 1993 .

[61]  H. Gavala,et al.  Thermal and enzymatic pretreatment of sludge containing phthalate esters prior to mesophilic anaerobic digestion , 2004, Biotechnology and bioengineering.

[62]  J. Roger,et al.  Alternative methods for determining anaerobic biodegradability: A review , 2010 .

[63]  Wen‐Teng Wu,et al.  Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. , 2010, Bioresource technology.

[64]  W. J. Li,et al.  Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta. , 2009, Journal of photochemistry and photobiology. B, Biology.

[65]  Willy Verstraete,et al.  Revival of the biological sunlight‐to‐biogas energy conversion system , 2009, Biotechnology and bioengineering.

[66]  J. Parajó,et al.  Hydrothermal processing of lignocellulosic materials , 1999, Holz als Roh- und Werkstoff.

[67]  S. Derenne,et al.  A reappraisal of kerogen formation , 1989 .

[68]  E. Olguín,et al.  The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. , 2001, Bioresource technology.

[69]  B. Mattiasson,et al.  Anaerobic digestion of lipid-rich waste - Effects of lipid concentration , 2007 .

[70]  O. Kruse,et al.  Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. , 2010, Journal of biotechnology.

[71]  J. Dworzanski,et al.  Comparison of sporopollenin-like algal resistant polymer from cell wall of Botryococcus, scenedesmus and lycopodium clavatum by GC-pyrolysis , 1988 .

[72]  J. Degrève,et al.  Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. , 2010, Bioresource technology.

[73]  A. Converti,et al.  EFFECT OF TEMPERATURE AND NITROGEN CONCENTRATION ON THE GROWTH AND LIPID CONTENT OF NANNOCHLOROPSIS OCULATA AND CHLORELLA VULGARIS FOR BIODIESEL PRODUCTION , 2009 .

[74]  D. L. Parry,et al.  Microalgae for use in tropical aquaculture I: Gross chemical and fatty acid composition of twelve species of microalgae from the Northern Territory, Australia , 1994, Journal of Applied Phycology.

[75]  Farzaneh Teymouri,et al.  Understanding factors that limit enzymatic hydrolysis of biomass , 2005, Applied biochemistry and biotechnology.

[76]  A. Rinzema,et al.  Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor , 1988 .

[77]  P. J. Syrett,et al.  THE ASSAY OF NITRATE REDUCTASE IN WHOLE CELLS OF CHLORELLA: STRAIN DIFFERENCES AND THE EFFECT OF CELL WALLS , 1973 .

[78]  J. Babarro,et al.  Influence of preservation techniques and freezing storage time on biochemical composition and spectrum of fatty acids of Isochrysis galbana clone T‐ISO , 2001 .

[79]  Razif Harun,et al.  Influence of acid pre-treatment on microalgal biomass for bioethanol production , 2011 .

[80]  J. Burczyk Biogenetic relationships between ketocarotenoids and sporopollenins in green algae , 1986 .