Global optimization of clusters of rigid molecules using the artificial bee colony algorithm.

The global optimization of molecular clusters is an important topic encountered in many fields of chemistry. In our previous work (Phys. Chem. Chem. Phys., 2015, 17, 24173), we successfully applied the recently introduced artificial bee colony (ABC) algorithm to the global optimization of atomic clusters and introduced the corresponding software "ABCluster". In the present work, ABCluster was extended to the optimization of clusters of rigid molecules. Here "rigid" means that all internal degrees of freedom of the constituent molecules are frozen. The algorithm was benchmarked by TIP4P water clusters (H2O)N (N ≤ 20), for which all global minima were successfully located. It was further applied to various clusters of different chemical nature: 10 microhydration clusters, 4 methanol microsolvation clusters, 4 nonpolar clusters and 2 ion-aromatic clusters. In all the cases we obtained results consistent with previous experimental or theoretical studies.

[1]  Charles F Vardeman,et al.  Size-dependent spontaneous alloying of Au-Ag nanoparticles. , 2002, Journal of the American Chemical Society.

[2]  Dharmender Kumar,et al.  A review on Artificial Bee Colony algorithm , 2013 .

[3]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[4]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[6]  D. Wales,et al.  Global potential energy minima of C60(H2O)n clusters. , 2006, The journal of physical chemistry. B.

[7]  G. Hummer,et al.  Are current molecular dynamics force fields too helical? , 2008, Biophysical journal.

[8]  Tamás Grósz,et al.  Hydrogen bond network topology in liquid water and methanol: a graph theory approach. , 2013, Physical chemistry chemical physics : PCCP.

[9]  Hiroshi Takeuchi Development of an Efficient Geometry Optimization Method for Water Clusters , 2008, J. Chem. Inf. Model..

[10]  David J Wales,et al.  Symmetrisation schemes for global optimisation of atomic clusters. , 2013, Physical chemistry chemical physics : PCCP.

[11]  Erber,et al.  Comment on "Method of constrained global optimization" , 1995, Physical review letters.

[12]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[13]  S. Xantheas,et al.  Microhydration Effects on the Intermediates of the (I- + CH3I) SN2 Reaction , 2013 .

[14]  David J. Wales,et al.  Global minima for water clusters (H2O)n, n ⩽ 21, described by a five-site empirical potential , 2005 .

[15]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[16]  W. Lipscomb,et al.  On the crystal structures, residual entropy and dielectric anomaly of methanol , 1952 .

[17]  B. Roux,et al.  The Solvation Structure of Na(+) and K(+) in Liquid Water Determined from High Level ab Initio Molecular Dynamics Simulations. , 2012, Journal of chemical theory and computation.

[18]  Jun Zhang,et al.  Actinoid(III) Hydration-First Principle Gibbs Energies of Hydration Using High Level Correlation Methods. , 2014, Journal of chemical theory and computation.

[19]  Frank Neese,et al.  The ORCA program system , 2012 .

[20]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[21]  L. Wille Minimum-energy configurations of atomic clusters: new results obtained by simulated annealing , 1987 .

[22]  Dervis Karaboga,et al.  A comprehensive survey: artificial bee colony (ABC) algorithm and applications , 2012, Artificial Intelligence Review.

[23]  V. S. Bryantsev,et al.  Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. , 2008, The journal of physical chemistry. B.

[24]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[25]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[26]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[27]  M. F. Bush,et al.  Sulfate ion patterns water at long distance. , 2010, Journal of the American Chemical Society.

[28]  Jonathan Doye,et al.  Thermodynamics of Global Optimization , 1998 .

[29]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[30]  W. Fabian,et al.  Coordination of methanol clusters to benzene: a computational study. , 2011, The journal of physical chemistry. A.

[31]  R. Johnston Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries , 2003 .

[32]  Jouni Lampinen,et al.  A Trigonometric Mutation Operation to Differential Evolution , 2003, J. Glob. Optim..

[33]  Harold A. Scheraga,et al.  Structure and free energy of complex thermodynamic systems , 1988 .

[34]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[35]  Ralf Ludwig,et al.  Water: From Clusters to the Bulk. , 2001, Angewandte Chemie.

[36]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[37]  M. Bonn,et al.  Cooperativity in Ion Hydration , 2010, Science.

[38]  J. L. Llanio-Trujillo,et al.  New insights on lithium-cation microsolvation by solvents forming hydrogen-bonds: Water versus methanol , 2013 .

[39]  Jun Zhang,et al.  Understanding lanthanoid(III) hydration structure and kinetics by insights from energies and wave functions. , 2014, Inorganic chemistry.

[40]  D. Wales The energy landscape as a unifying theme in molecular science , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  Hiroshi Takeuchi,et al.  Geometry optimization of carbon dioxide clusters (CO2)n for 4 < or = n < or = 40. , 2008, The journal of physical chemistry. A.

[42]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[43]  B. Hartke,et al.  Dodecahedral clathrate structures and magic numbers in alkali cation microhydration clusters. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[44]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[45]  R. Johnston,et al.  Global optimization of clusters using electronic structure methods , 2013 .

[46]  J. Hernández-Rojas,et al.  Global Potential Energy Minima of (H2O)n Clusters on Graphite , 2007, 0706.1152.

[47]  Hiroshi Takeuchi,et al.  Structural features of small benzene clusters (C6H6)n (n ≤ 30) as investigated with the all-atom OPLS potential. , 2012, The journal of physical chemistry. A.

[48]  Mark T. Oakley,et al.  Structures and Energy Landscapes of Hydrated Sulfate Clusters. , 2015, Journal of chemical theory and computation.

[49]  T. Fehlner,et al.  Molecular Clusters: A Bridge to Solid-State Chemistry , 2007 .

[50]  Sergey Kazachenko,et al.  Methanol clusters (CH3OH)n: putative global minimum-energy structures from model potentials and dispersion-corrected density functional theory. , 2013, The Journal of chemical physics.

[51]  J. Cruickshank,et al.  The hydration structure of guanidinium and thiocyanate ions: Implications for protein stability in aqueous solution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[52]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[53]  B. Hartke Methane-water clusters under pressure: are clathrate cages optimal clusters? , 2009, The Journal of chemical physics.

[54]  L. Pauling The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement , 1935 .

[55]  David J. Wales,et al.  Global minima of water clusters (H2O)n, n≤21, described by an empirical potential , 1998 .

[56]  T. Martínez,et al.  The solvation of chloride by methanol—surface versus interior cluster ion states , 1999 .

[57]  Jun Zhang,et al.  ABCluster: the artificial bee colony algorithm for cluster global optimization. , 2015, Physical chemistry chemical physics : PCCP.

[58]  B. M. Powell,et al.  Structure of the α-phase of solid methanol , 1989 .

[59]  D. Wales,et al.  Global minima and energetics of Li+(H2O)n and Ca2+(H2O)n clusters for n ⩽ 20 , 2005 .