The virtual path (VP) can simplifyAtm network management by minimizing connection routing and admission costs, and by facilitating the layered control of resources. However, fully exploiting these advantages may lead to a large number of relatively low capacity virtual paths travelling on each physical link. If each VP is treated as a separate unit, as is commonly assumed, low path capacities will lead to low network utilisation. This paper carefully examines the trade-off between simplification through traffic separation and improved efficiency due to traffic consolidation. We review existing vp bandwidth assignment and control techniques, and propose a new vp tagging control method. A comparison shows that by permitting resource sharing between paths it is possible to influence significantly the trade-off between simplified network management and multiplexing gain from traffic consolidation.RésuméL’utilisation de conduits virtuels peut simplifier la planification d’un réseau en techniqueAtm, en réduisant les coûts d’admission ou de connexion et en facilitant la gestion en couches des ressources. L’exploitation sans réserve de ces possibilités peut cependant conduire à une structure de réseau comptant un grand nombre de conduits virtuels de capacité relativement faible routés sur de gros conduits physiques. Si chaque conduit virtuel compte alors comme unité indépendante — ce qui est usuel—la taille trop faible des conduits virtuels conduira à une mauvaise utilisation du réseau. Cet article cherche donc un compromis entre la simplification obtenue en scindant le trafic et l’amélioration des performances due à son regroupement. On passe en revue les techniques de contrôle de trafic et d’allocation de débit : puis, on propose une nouvelle méthode de marquage de conduits virtuels. La comparaison montre que le partage des ressources entre les différents conduits influe considérablement sur le compromis entre une gestion simple du réseau et le bénéfice qu’on attend du multiplexage d’appels.
[1]
Peter Key,et al.
Connection Admission Control in ATM networks
,
1995
.
[2]
J. Filipiak.
Real Time Network Management
,
1991
.
[3]
Hiroyuki Okazaki,et al.
A Study on ATM Network Planning Based on Evaluation of Design Items
,
1993
.
[4]
Hiroshi Suzuki,et al.
A Call Admission Control Scheme for ATM Networks Using a Simple Quality Estimate
,
1991,
IEEE J. Sel. Areas Commun..
[5]
J.W. Roberts,et al.
Variable-bit-rate traffic control in B-ISDN
,
1991,
IEEE Communications Magazine.
[6]
Roy D. Yates,et al.
A Layered Broadband Switching Architecture with Physical or Virtual Path Configurations
,
1991,
IEEE J. Sel. Areas Commun..
[7]
Suzanne P. Evans,et al.
A mathematical model and related problems of optimal management and design in a broadband integrated services network
,
1989,
The Journal of the Australian Mathematical Society Series B Applied Mathematics.
[8]
Janusz Filipiak.
Structured systems analysis methodology for design of an ATM network architecture
,
1989,
IEEE J. Sel. Areas Commun..
[9]
Gillian Woodruff,et al.
Multimedia Traffic Management Principles for Guaranteed ATM Network Performance
,
1990,
IEEE J. Sel. Areas Commun..
[10]
J. W. Roberts,et al.
Performance evaluation and design of multiservice networks
,
1992
.
[11]
J. Burgin,et al.
Broadband ISDN resource management: the role of virtual paths
,
1991,
IEEE Communications Magazine.
[12]
Nguyen Duc,et al.
ISDN protocol architecture
,
1985,
IEEE Commun. Mag..
[13]
David Anthony Hughes.
Traffic control for broadband ISDN
,
1992
.