Recent progress in terahertz difference-frequency quantum cascade laser sources

Abstract Terahertz quantum cascade laser (QCL) sources based on intra-cavity difference frequency generation are currently the only electrically pumped monolithic semiconductor light sources operating at room temperature in the 1–6-THz spectral range. Relying on the active regions with the giant second-order nonlinear susceptibility and the Cherenkov phase-matching scheme, these devices demonstrated drastic improvements in performance in the past several years and can now produce narrow-linewidth single-mode terahertz emission that is tunable from 1 to 6 THz with power output sufficient for imaging and spectroscopic applications. This paper reviews the progress of this technology. Recent efforts in wave function engineering using a new active region design based on a dual-upper-state concept led to a significant enhancement of the optical nonlinearity of the active region for efficient terahertz generation. The transfer of Cherenkov devices from their native semi-insulating InP substrates to high-resistivity silicon substrates resulted in a dramatic improvement in the outcoupling efficiency of terahertz radiation. Cherenkov terahertz QCL sources based on the dual-upper-state design have also been shown to exhibit ultra-broadband comb-like terahertz emission spectra with more than one octave of terahertz frequency span. The broadband terahertz QCL sources operating in continuous-wave mode produces the narrow inter-mode beat-note linewidth of 287 Hz, which indicates frequency comb operation of mid-infrared pumps and thus supports potential terahertz comb operation. Finally, we report the high-quality terahertz imaging obtained by a THz imaging system using terahertz QCL sources based on intra-cavity difference frequency generation.

[1]  Werner Schrenk,et al.  High power terahertz quantum cascade lasers with symmetric wafer bonded active regions , 2013 .

[2]  Naota Akikusa,et al.  Broadband Tuning of External Cavity Dual-Upper-State Quantum-Cascade Lasers in Continuous Wave Operation , 2011 .

[3]  Manijeh Razeghi,et al.  Widely tunable room temperature semiconductor terahertz source , 2014 .

[4]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[5]  M. Razeghi,et al.  Quantum cascade lasers: from tool to product. , 2015, Optics express.

[6]  Jérôme Faist,et al.  External cavity quantum cascade laser , 2010 .

[7]  T. Edamura,et al.  Broadband tuning of continuous wave quantum cascade lasers in long wavelength (> 10 μm) range. , 2014, Optics express.

[8]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[9]  Manijeh Razeghi,et al.  Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers , 2016, Scientific Reports.

[10]  C. Jirauschek,et al.  Modeling techniques for quantum cascade lasers , 2014, 1412.3563.

[11]  Yargo Bonetti,et al.  External cavity quantum cascade laser tunable from 7.6 to 11.4 μm , 2009 .

[12]  Qing Hu,et al.  Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions , 2006 .

[13]  K. Fujita,et al.  Theory of the Intrinsic Linewidth of Quantum-Cascade Lasers: Hidden Reason for the Narrow Linewidth and Line-Broadening by Thermal Photons , 2008, IEEE Journal of Quantum Electronics.

[14]  T. Edamura,et al.  Low-threshold room-temperature continuous-wave operation of a terahertz difference-frequency quantum cascade laser source , 2017 .

[15]  Hirofumi Kan,et al.  High-Performance $\lambda \sim 8.6~\mu {\rm m}$ Quantum Cascade Lasers With Single Phonon-Continuum Depopulation Structures , 2010, IEEE Journal of Quantum Electronics.

[16]  Massimo Inguscio,et al.  Quantum-limited frequency fluctuations in a terahertz laser , 2012, Nature Photonics.

[17]  Seungyong Jung,et al.  Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays , 2015 .

[18]  F. Capasso,et al.  New frontiers in quantum cascade lasers: high performance room temperature terahertz sources , 2015 .

[19]  B. Williams,et al.  High-power terahertz quantum cascade lasers , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[20]  Tadataka Edamura,et al.  High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design , 2010 .

[21]  Peter Vogl,et al.  Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers , 2009 .

[22]  C. Kumar N. Patel,et al.  Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency , 2013, Photonics West - Optoelectronic Materials and Devices.

[23]  David Ritchie,et al.  Imaging with THz quantum cascade lasers using a Schottky diode mixer. , 2005, Optics express.

[24]  James S. Harris,et al.  Biomedical terahertz imaging with a quantum cascade laser , 2006 .

[25]  A. Tahraoui,et al.  High-temperature, continuous-wave operation of terahertz quantum-cascade lasers with metal-metal waveguides and third-order distributed feedback. , 2014, Optics express.

[26]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[27]  P. Collot,et al.  Quantum Cascade Lasers , 1997, CLEO/Europe Conference on Lasers and Electro-Optics.

[28]  Seungyong Jung,et al.  Terahertz difference-frequency quantum cascade laser sources on silicon , 2017 .

[29]  A. Lee,et al.  Real-time terahertz imaging over a standoff distance (>25meters) , 2006 .

[30]  G. Scalari,et al.  Quantum cascade lasers: 20 years of challenges. , 2015, Optics express.

[31]  Tadataka Edamura,et al.  High-performance quantum cascade lasers with wide electroluminescence (∼600 cm−1), operating in continuous-wave above 100 °C , 2011 .

[32]  Tadataka Edamura,et al.  Broad-gain (Δλ/λ0, 2011, Optics express.

[33]  Seungyong Jung,et al.  Terahertz generation in mid-infrared quantum cascade lasers with a dual-upper-state active region , 2015 .

[34]  Qing Hu,et al.  Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array. , 2005, Optics letters.

[35]  M. Beck,et al.  Heterogeneous terahertz quantum cascade lasers exceeding 1.9 THz spectral bandwidth and featuring dual comb operation , 2017 .

[36]  Mattias Beck,et al.  Ultra-broadband heterogeneous quantum cascade laser emitting from 2.2 to 3.2 THz , 2011 .

[37]  Lutz Schrottke,et al.  Frequency dependence of the maximum operating temperature for quantum-cascade lasers up to 5.4 THz , 2015 .

[38]  Qi Jie Wang,et al.  Gain competition in dual wavelength quantum cascade lasers. , 2010, Optics express.

[39]  Manijeh Razeghi,et al.  Recent development of high power, widely tunable THz quantum cascade laser sources based on difference-frequency generation , 2015, SPIE Security + Defence.

[40]  E. Gini,et al.  High-Performance Bound-to-Continuum Quantum-Cascade Lasers for Broad-Gain Applications , 2008, IEEE Journal of Quantum Electronics.

[41]  F. Capasso,et al.  Terahertz Quantum Cascade Laser Source Based on Intra-Cavity Difference-Frequency Generation , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[42]  Electrical flicker-noise generated by filling and emptying of impurity states in injectors of quantum-cascade lasers , 2014 .

[43]  Qi Jie Wang,et al.  3 W Continuous-Wave Room Temperature Single-Facet Emission From Quantum Cascade Lasers Based On Nonresonant Extraction Design Approach , 2009 .

[44]  Mattias Beck,et al.  Octave-spanning semiconductor laser , 2014, Nature Photonics.

[45]  B. Gorshunov,et al.  Dielectric properties of semi-insulating Fe-doped InP in the terahertz spectral region , 2017, Scientific Reports.

[46]  Arkadiy Lyakh,et al.  5.6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28% , 2016 .

[47]  Kazuue Fujita,et al.  Development of THz light sources based on QCL technology , 2018, OPTO.

[48]  S. Umegaki,et al.  Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides , 1992 .

[49]  Alexei Tsekoun,et al.  Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency. , 2012, Optics express.

[50]  K. M. Chung,et al.  Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling. , 2012, Optics express.

[51]  Seungyong Jung,et al.  External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range , 2014 .

[52]  Yah Leng Lim,et al.  Terahertz imaging through self-mixing in a quantum cascade laser. , 2011, Optics letters.

[53]  Seungyong Jung,et al.  Recent Progress in Widely Tunable Single-Mode Room Temperature Terahertz Quantum Cascade Laser Sources , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[54]  Manijeh Razeghi,et al.  Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting , 2013 .

[55]  J. Faist,et al.  Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation , 2008 .

[56]  Mattias Beck,et al.  Quantum Cascade Laser Frequency Combs , 2015, 1510.09075.

[57]  H. Beere,et al.  Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers , 2012, Nature Communications.

[58]  Qing Hu,et al.  Proposal for real-time terahertz imaging system with palm-size terahertz camera and compact quantum cascade laser , 2012, Defense + Commercial Sensing.

[59]  Manijeh Razeghi,et al.  Room temperature single-mode terahertz sources based on intracavity difference-frequency generation in quantum cascade lasers , 2011 .

[60]  Qing Hu,et al.  Terahertz laser frequency combs , 2014 .

[61]  Mattias Beck,et al.  Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature , 2001, Science.

[62]  Seungyong Jung,et al.  Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources , 2014, Nature Communications.

[63]  Marcella Giovannini,et al.  Turn-key compact high temperature terahertz quantum cascade lasers: imaging and room temperature detection. , 2006, Optics express.

[64]  David A. Ritchie,et al.  Frequency-Comb-Assisted Terahertz Quantum Cascade Laser Spectroscopy , 2014 .

[65]  Aiting Jiang,et al.  Broadly tunable terahertz generation in mid-infrared quantum cascade lasers , 2013, Nature Communications.

[66]  Tadataka Edamura,et al.  Extremely temperature-insensitive continuous-wave quantum cascade lasers , 2012 .

[67]  Manijeh Razeghi,et al.  Widely tuned room temperature terahertz quantum cascade laser sources based on difference-frequency generation , 2012 .

[68]  M. Beck,et al.  Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation , 2002 .

[69]  Karun Vijayraghavan,et al.  Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers , 2012 .

[70]  Federico Capasso,et al.  Dependence of the device performance on the number of stages in quantum-cascade lasers , 1999 .

[71]  Mattias Beck,et al.  Ultra-broadband quantum cascade laser operating from 1.88 to 3.82 THz , 2016, 1612.07594.

[72]  Seungyong Jung,et al.  Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation , 2017, Science Advances.

[73]  Manijeh Razeghi,et al.  Continuous operation of a monolithic semiconductor terahertz source at room temperature , 2014 .

[74]  Edmund H. Linfield,et al.  Terahertz quantum cascade lasers with >1 W output powers , 2014 .

[75]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[76]  Tadataka Edamura,et al.  Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation. , 2016, Optics express.

[77]  J. Faist,et al.  Mid-infrared frequency comb based on a quantum cascade laser , 2012, Nature.

[78]  Carlo Sirtori,et al.  Nonlinear phase matching in THz semiconductor waveguides , 2004 .

[79]  David A. Ritchie,et al.  Three-dimensional imaging with a terahertz quantum cascade laser , 2006 .

[80]  H. Hübers,et al.  Real-time terahertz imaging through self-mixing in a quantum-cascade laser , 2016 .

[81]  M. Beck,et al.  Far infrared quantum-cascade lasers based on a bound-to-continuum transition , 2001, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[82]  Jérôme Faist,et al.  Quantum cascade lasers operating from 1.2to1.6THz , 2007 .

[83]  Seungyong Jung,et al.  Spectroscopic Study of Terahertz Generation in Mid-Infrared Quantum Cascade Lasers , 2016, Scientific Reports.