Design of optimized soft soles for humanoid robots

We describe a methodology to design foot soles for a humanoid robot given walking gait parameters (i.e. given center-of-mass and zero-moment-point trajectories). In order to obtain an optimized compliant sole, we devised a shape optimization framework which takes –among other inputs, an initial rough (simplified) shape of the sole and refines it through successive optimization steps under additional constraints and a cost function. The shape is optimized based on the simulation of the sole deformation during an entire walking step, taking time dependent input of the walking pattern generator into account. Our shape optimization framework is able to minimize the impact of the foot with the ground during the heel-strike phase and to limit foot rotation in case of perturbations. Indeed, low foot rotation enforces a vertical posture and secures the balance of the humanoid robot. Moreover, weight restriction (formulated as a constraint on the sole volume) is added to our optimization problem.

[1]  Shuuji Kajita,et al.  Robot motion remix based on motion capture data towards human-like locomotion of humanoid robots , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[2]  Manuel Doblaré,et al.  Shape optimization of elastic homogeneous 2D bodies by the boundary element method , 1989 .

[3]  E. Ng,et al.  Adjoint methods for electromagnetic shape optimization of the low-loss cavity for the International Linear Collider , 2005 .

[4]  Scott Kuindersma,et al.  Modeling and Control of Legged Robots , 2016, Springer Handbook of Robotics, 2nd Ed..

[5]  Katja Mombaur,et al.  Modeling and identification of emotional aspects of locomotion , 2013, J. Comput. Sci..

[6]  Jean-Antoine Désidéri,et al.  Nested and self-adaptive Bézier parameterizations for shape optimization , 2007, J. Comput. Phys..

[7]  Tatsuo Narikiyo,et al.  受動歩行機の足裏形状最適化による歩行安定化;受動歩行機の足裏形状最適化による歩行安定化;Gait Stabilization of Passive Dynamic Walking by Foot Shape Optimization , 2014 .

[8]  Kazuhito Yokoi,et al.  Study of an external passive shock-absorbing mechanism for walking robots , 2008, Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots.

[9]  Don Joven Agravante,et al.  Collaborative human-humanoid carrying using vision and haptic sensing , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Zafer Gürdal,et al.  Isogeometric sizing and shape optimisation of beam structures , 2009 .

[11]  Christian Duriez,et al.  Realistic haptic rendering of interacting deformable objects in virtual environments , 2008, IEEE Transactions on Visualization and Computer Graphics.

[12]  F. Jourdan,et al.  A Gauss-Seidel like algorithm to solve frictional contact problems , 1998 .

[13]  Mont Hubbard,et al.  Optimal foot shape for a passive dynamic biped. , 2007, Journal of theoretical biology.

[14]  Eiichi Yoshida,et al.  Multi-contact vertical ladder climbing with an HRP-2 humanoid , 2016, Auton. Robots.

[15]  Guy Bessonnet,et al.  Gait analysis of a human walker wearing robot feet as shoes , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[16]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[17]  Kazuhito Yokoi,et al.  Balancing a humanoid robot using backdrive concerned torque control and direct angular momentum feedback , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[18]  Fethi Ben Ouezdou,et al.  Dynamic walk of a bipedal robot having flexible feet , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[19]  Shuuji Kajita,et al.  Constraint-based dynamics simulator for humanoid robots with shock absorbing mechanisms , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[21]  Morten Bro-Nielsen,et al.  Real‐time Volumetric Deformable Models for Surgery Simulation using Finite Elements and Condensation , 1996, Comput. Graph. Forum.

[22]  de Marc Schoenauer,et al.  Conception optimale de structures , 2007 .

[23]  S. Collins,et al.  The advantages of a rolling foot in human walking , 2006, Journal of Experimental Biology.

[24]  Terry L. Holst Genetic Algorithms Applied to Multi-Objective Aerospace Shape Optimization , 2005, J. Aerosp. Comput. Inf. Commun..

[25]  Phillipp Kaestner,et al.  Linear And Nonlinear Programming , 2016 .

[26]  David W. Zingg,et al.  An Evolutionary Geometry Parametrization for Aerodynamic Shape Optimization , 2011 .

[27]  R. Haftka,et al.  Structural shape optimization — a survey , 1986 .

[28]  Giovanni De Magistris,et al.  Optimized humanoid walking with soft soles , 2017, Robotics Auton. Syst..

[29]  Jean-Paul Laumond,et al.  From human to humanoid locomotion—an inverse optimal control approach , 2010, Auton. Robots.

[30]  Graham F. Carey,et al.  Shape optimization using adaptive shape refinement , 1993 .

[31]  Francis Noblesse,et al.  Hydrodynamic optimization of ship hull forms , 2001 .

[32]  Katsu Yamane,et al.  Effect of foot shape on locomotion of active biped robots , 2009, 2009 9th IEEE-RAS International Conference on Humanoid Robots.

[33]  François Keith,et al.  Human-humanoid haptic joint object transportation case study , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Atsuo Takanishi,et al.  Multisensor foot mechanism with shock absorbing material for dynamic biped walking adapting to unknown uneven surfaces , 1996, 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems (Cat. No.96TH8242).

[35]  Qian Wang,et al.  Review of formulations for structural and mechanical system optimization , 2005 .

[36]  T. Pulliam,et al.  A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization , 2008 .

[37]  Gordon Cheng,et al.  Examining human walking characteristics with a telescopic compass-like biped walker model , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[38]  R. F. Ker,et al.  The mechanical properties of the human heel pad: a paradox resolved. , 1995, Journal of Biomechanics.

[39]  Fumio Kanehiro,et al.  Humanoid robot HRP-2 , 2008, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[40]  Pierre Alart,et al.  Critères d’injectivité et de surjectivité pour certaines applications de $\mathbb {R}^n$ dans lui-même ; application à la mécanique du contact , 1993 .

[41]  Rakesh K. Kapania,et al.  Optimization and Postbuckling Analysis of Curvilinear-Stiffened Panels Under Multiple-Load Cases , 2010 .

[42]  Giovanni De Magistris,et al.  A humanoid walking pattern generator for sole design optimization , 2015, 2015 International Conference on Advanced Robotics (ICAR).

[43]  Giovanni De Magistris,et al.  Humanoid walking with compliant soles using a deformation estimator , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[44]  Christian Rey,et al.  The finite element method in solid mechanics , 2014 .

[45]  Vincent Herbert,et al.  Hybrid method for aerodynamic shape optimization in automotive industry , 2004 .