An Incremental Linear Discriminant Analysis for Data Streams Under Non-stationary Environments (SCI'13論文特集号(3))

[1]  Gerhard Widmer,et al.  Learning in the Presence of Concept Drift and Hidden Contexts , 1996, Machine Learning.

[2]  Klaus-Robert Müller,et al.  Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis , 2011, IEEE Transactions on Neural Networks and Learning Systems.

[3]  Xin Yao,et al.  Negative correlation in incremental learning , 2009, Natural Computing.

[4]  Vipin Kumar,et al.  Feature bagging for outlier detection , 2005, KDD '05.

[5]  Haitao Zhao,et al.  A novel incremental principal component analysis and its application for face recognition , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  Robi Polikar,et al.  Incremental Learning of Concept Drift in Nonstationary Environments , 2011, IEEE Transactions on Neural Networks.

[7]  Klaus-Robert Müller,et al.  Identification of nonstationary dynamics in physiological recordings , 2000, Biological Cybernetics.

[8]  William Nick Street,et al.  A streaming ensemble algorithm (SEA) for large-scale classification , 2001, KDD '01.

[9]  K. Müller,et al.  Finding stationary subspaces in multivariate time series. , 2009, Physical review letters.

[10]  Nikola K. Kasabov,et al.  Incremental linear discriminant analysis for evolving feature spaces in multitask pattern recognition problems , 2010, Evol. Syst..

[11]  Seiichi Ozawa,et al.  A Multitask Learning Model for Online Pattern Recognition , 2009, IEEE Transactions on Neural Networks.

[12]  Mykola Pechenizkiy,et al.  Dynamic integration of classifiers for handling concept drift , 2008, Inf. Fusion.

[13]  David Masip,et al.  Boosted Online Learning for Face Recognition , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  Cesare Alippi,et al.  Just-in-Time Adaptive Classifiers—Part I: Detecting Nonstationary Changes , 2008, IEEE Transactions on Neural Networks.