Mutations of Voltage-Gated Sodium Channel Genes SCN1A and SCN2A in Epilepsy, Intellectual Disability, and Autism

[1]  V. Wong,et al.  SCN2A mutation in a Chinese boy with infantile spasm - response to Modified Atkins Diet , 2015, Brain and Development.

[2]  M. Mizuguchi,et al.  A case of recurrent encephalopathy with SCN2A missense mutation , 2015, Brain and Development.

[3]  W. Catterall,et al.  Genetic background modulates impaired excitability of inhibitory neurons in a mouse model of Dravet syndrome , 2015, Neurobiology of Disease.

[4]  Tomas W. Fitzgerald,et al.  Large-scale discovery of novel genetic causes of developmental disorders , 2014, Nature.

[5]  F. Fujiyama,et al.  Singular localization of sodium channel β4 subunit in unmyelinated fibres and its role in the striatum , 2014, Nature Communications.

[6]  Christopher S. Poultney,et al.  Synaptic, transcriptional, and chromatin genes disrupted in autism , 2014, Nature.

[7]  Boris Yamrom,et al.  The contribution of de novo coding mutations to autism spectrum disorder , 2014, Nature.

[8]  Yousheng Shu,et al.  Molecular identity of axonal sodium channels in human cortical pyramidal cells , 2014, Front. Cell. Neurosci..

[9]  Yousheng Shu,et al.  Action Potential Initiation in Neocortical Inhibitory Interneurons , 2014, PLoS biology.

[10]  William A. Catterall,et al.  Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome , 2014, Proceedings of the National Academy of Sciences.

[11]  E. Leshinsky‐Silver,et al.  Early onset epileptic encephalopathy caused by de novo SCN8A mutations , 2014, Epilepsia.

[12]  S. Papuc,et al.  Infantile Epileptic Encephalopathy, Transient Choreoathetotic Movements, and Hypersomnia due to a De Novo Missense Mutation in the SCN2A Gene , 2014, Neuropediatrics.

[13]  A. Kolevzon,et al.  De novo SCN2A splice site mutation in a boy with Autism spectrum disorder , 2014, BMC Medical Genetics.

[14]  A. George,et al.  Novel SCN3A variants associated with focal epilepsy in children , 2014, Neurobiology of Disease.

[15]  Peter Donnelly,et al.  Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis , 2014, Human molecular genetics.

[16]  E. Wirrell,et al.  Novel de novo SCN2A mutation in a child with migrating focal seizures of infancy. , 2013, Pediatric neurology.

[17]  X. Zhang,et al.  Gain-of-function mutations in SCN11A cause familial episodic pain. , 2013, American journal of human genetics.

[18]  Peter Nürnberg,et al.  A de novo gain-of-function mutation in SCN11A causes loss of pain perception , 2013, Nature Genetics.

[19]  D. Lev,et al.  Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome , 2013, Neurology.

[20]  Scott C. Baraban,et al.  Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet Syndrome treatment , 2013, Nature Communications.

[21]  E. Gaily,et al.  Dravet syndrome: New potential genetic modifiers, imaging abnormalities, and ictal findings , 2013, Epilepsia.

[22]  H. Lerche,et al.  An SCN2A mutation in a family with infantile seizures from Madagascar reveals an increased subthreshold Na+ current , 2013, Epilepsia.

[23]  Michael R. Johnson,et al.  De novo mutations in the classic epileptic encephalopathies , 2013, Nature.

[24]  S. Scherer,et al.  Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. , 2013, American journal of human genetics.

[25]  N. Tamamaki,et al.  Nav1.1 haploinsufficiency in excitatory neurons ameliorates seizure-associated sudden death in a mouse model of Dravet syndrome , 2013, Human molecular genetics.

[26]  Robert C. Thompson,et al.  The More, the Better: Modeling Dravet Syndrome With Induced Pluripotent Stem Cell-Derived Neurons , 2014 .

[27]  M. Curtis,et al.  Hippocampal hyperexcitability and specific epileptiform activity in a mouse model of Dravet syndrome , 2013, Epilepsia.

[28]  Jiao Jiao,et al.  Modeling Dravet syndrome using induced pluripotent stem cells (iPSCs) and directly converted neurons. , 2013, Human molecular genetics.

[29]  J. Shendure,et al.  Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1 , 2013, Nature Genetics.

[30]  H. Okano,et al.  A human Dravet syndrome model from patient induced pluripotent stem cells , 2013, Molecular Brain.

[31]  H. Kinney,et al.  Whole genome sequencing identifies SCN2A mutation in monozygotic twins with Ohtahara syndrome and unique neuropathologic findings , 2013, Epilepsia.

[32]  J. Rubenstein,et al.  GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior , 2013, Nature Neuroscience.

[33]  W. Catterall,et al.  Sudden unexpected death in a mouse model of Dravet syndrome. , 2013, The Journal of clinical investigation.

[34]  Katsuhiro Kobayashi,et al.  CACNA1A variants may modify the epileptic phenotype of Dravet syndrome , 2013, Neurobiology of Disease.

[35]  Stacey B. B. Dutton,et al.  Preferential inactivation of Scn1a in parvalbumin interneurons increases seizure susceptibility , 2013, Neurobiology of Disease.

[36]  K. Yamakawa,et al.  Mouse with Nav1.1 haploinsufficiency, a model for Dravet syndrome, exhibits lowered sociability and learning impairment , 2013, Neurobiology of Disease.

[37]  K. Yamakawa,et al.  A homozygous mutation of voltage‐gated sodium channel βI gene SCN1B in a patient with Dravet syndrome , 2012, Epilepsia.

[38]  D. Horn,et al.  Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study , 2012, The Lancet.

[39]  Thomas J. Davidson,et al.  Closed-loop optogenetic control of thalamus as a new tool to interrupt seizures after cortical injury , 2012, Nature Neuroscience.

[40]  S. Dib-Hajj,et al.  Gain-of-function Nav1.8 mutations in painful neuropathy , 2012, Proceedings of the National Academy of Sciences.

[41]  M. Rogawski,et al.  Compromised function in the Nav1.2 Dravet syndrome mutation R1312T , 2012, Neurobiology of Disease.

[42]  J. Rubenstein,et al.  Specific deletion of NaV1.1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome , 2012, Proceedings of the National Academy of Sciences.

[43]  William A Catterall,et al.  Autistic behavior in Scn1a+/− mice and rescue by enhanced GABAergic transmission , 2012, Nature.

[44]  K. Yamakawa,et al.  Efficacy of stiripentol in hyperthermia‐induced seizures in a mouse model of Dravet syndrome , 2012, Epilepsia.

[45]  R. Sagar,et al.  Psychiatric Aspects of Childhood Epilepsy , 2012 .

[46]  Edward O. Mann,et al.  Inhibitory Interneuron Deficit Links Altered Network Activity and Cognitive Dysfunction in Alzheimer Model , 2012, Cell.

[47]  Michael F. Walker,et al.  De novo mutations revealed by whole-exome sequencing are strongly associated with autism , 2012, Nature.

[48]  K. Veeramah,et al.  De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. , 2012, American journal of human genetics.

[49]  Bradley P. Coe,et al.  Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations , 2012, Nature.

[50]  M. Carandini,et al.  Parvalbumin-Expressing Interneurons Linearly Transform Cortical Responses to Visual Stimuli , 2012, Neuron.

[51]  P. Ruben,et al.  A hot topic , 2012, Channels.

[52]  Xiao-Rong Liu,et al.  Autism in Dravet syndrome: Prevalence, features, and relationship to the clinical characteristics of epilepsy and mental retardation , 2011, Epilepsy & Behavior.

[53]  M. Rieder,et al.  Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations , 2011, Nature Genetics.

[54]  G. Feng,et al.  Shank3 mutant mice display autistic-like behaviours and striatal dysfunction , 2011, Nature.

[55]  S. Petrou,et al.  SCN2A mutation associated with neonatal epilepsy, late-onset episodic ataxia, myoclonus, and pain , 2010, Neurology.

[56]  K. Yamakawa,et al.  Deletions of SCN1A 5′ genomic region with promoter activity in Dravet syndrome , 2010, Human mutation.

[57]  Z. Nusser,et al.  Molecular Identity of Dendritic Voltage-Gated Sodium Channels , 2010, Science.

[58]  A. Becker,et al.  Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. , 2010, Brain : a journal of neurology.

[59]  Xin-Hong Zhu,et al.  Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons , 2009, Proceedings of the National Academy of Sciences.

[60]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[61]  E. Nakagawa,et al.  Missense mutation of the sodium channel gene SCN2A causes Dravet syndrome , 2009, Brain and Development.

[62]  K. Yamakawa,et al.  De novo mutations of voltage-gated sodium channel αII gene SCN2A in intractable epilepsies , 2009, Neurology.

[63]  M. Leppert,et al.  A Role of SCN9A in Human Epilepsies, As a Cause of Febrile Seizures and As a Potential Modifier of Dravet Syndrome , 2009, PLoS genetics.

[64]  Yousheng Shu,et al.  Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation , 2009, Nature Neuroscience.

[65]  Steven Petrou,et al.  Heat opens axon initial segment sodium channels: A febrile seizure mechanism? , 2009, Annals of neurology.

[66]  William A Catterall,et al.  Temperature- and age-dependent seizures in a mouse model of severe myoclonic epilepsy in infancy , 2009, Proceedings of the National Academy of Sciences.

[67]  T. Kaneko,et al.  Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice , 2009, Neuroscience Research.

[68]  M. Ekker,et al.  Generation of Cre-transgenic mice using Dlx1/Dlx2 enhancers and their characterization in GABAergic interneurons , 2009, Molecular and Cellular Neuroscience.

[69]  Zoltan Nusser,et al.  Cell-Type-Dependent Molecular Composition of the Axon Initial Segment , 2008, The Journal of Neuroscience.

[70]  K. Tomizawa,et al.  A CACNB4 mutation shows that altered Cav2.1 function may be a genetic modifier of severe myoclonic epilepsy in infancy , 2008, Neurobiology of Disease.

[71]  C. Depienne,et al.  Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients , 2008, Journal of Medical Genetics.

[72]  Alfred L George,et al.  Impaired NaV1.2 function and reduced cell surface expression in benign familial neonatal‐infantile seizures , 2008, Epilepsia.

[73]  M. Crair,et al.  Cortical Adenylyl Cyclase 1 Is Required for Thalamocortical Synapse Maturation and Aspects of Layer IV Barrel Development , 2008, The Journal of Neuroscience.

[74]  M. Meisler,et al.  Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy , 2008, Neuroscience Letters.

[75]  Melinda S. Martin,et al.  The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. , 2007, Human molecular genetics.

[76]  K. Yamakawa,et al.  Patients with a sodium channel alpha 1 gene mutation show wide phenotypic variation , 2007, Epilepsy Research.

[77]  I. Scheffer,et al.  SCN2A Mutations and Benign Familial Neonatal‐Infantile Seizures: The Phenotypic Spectrum , 2007, Epilepsia.

[78]  Samuel F. Berkovic,et al.  A childhood epilepsy mutation reveals a role for developmentally regulated splicing of a sodium channel , 2007, Molecular and Cellular Neuroscience.

[79]  Hiroyuki Miyamoto,et al.  Nav1.1 Localizes to Axons of Parvalbumin-Positive Inhibitory Interneurons: A Circuit Basis for Epileptic Seizures in Mice Carrying an Scn1a Gene Mutation , 2007, The Journal of Neuroscience.

[80]  I. Scheffer,et al.  The spectrum of SCN1A-related infantile epileptic encephalopathies. , 2007, Brain : a journal of neurology.

[81]  G. Matthews,et al.  Polarized distribution of ion channels within microdomains of the axon initial segment , 2007, The Journal of comparative neurology.

[82]  Hussain Jafri,et al.  An SCN9A channelopathy causes congenital inability to experience pain , 2006, Nature.

[83]  G. Avanzini,et al.  Effects in Neocortical Neurons of Mutations of the Nav1.2 Na+ Channel causing Benign Familial Neonatal-Infantile Seizures , 2006, The Journal of Neuroscience.

[84]  K. Yamakawa,et al.  SCN1A Mutation Mosaicism in a Family with Severe Myoclonic Epilepsy in Infancy , 2006, Epilepsia.

[85]  Massimo Mantegazza,et al.  Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy , 2006, Nature Neuroscience.

[86]  A. L. Goldin,et al.  An Epilepsy Mutation in the Sodium Channel SCN1A That Decreases Channel Excitability , 2006, The Journal of Neuroscience.

[87]  E. Bertini,et al.  Somatic and germline mosaicisms in severe myoclonic epilepsy of infancy. , 2006, Biochemical and biophysical research communications.

[88]  P. Striano,et al.  A Novel SCN2A Mutation in Family with Benign Familial Infantile Seizures , 2006, Epilepsia.

[89]  Aldo Quattrone,et al.  Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[90]  K. Yamakawa,et al.  Sodium channel dysfunction in intractable childhood epilepsy with generalized tonic–clonic seizures , 2005, The Journal of physiology.

[91]  M. Meisler,et al.  Heterozygosity for a protein truncation mutation of sodium channel SCN8A in a patient with cerebellar atrophy, ataxia, and mental retardation , 2005, Journal of Medical Genetics.

[92]  K. Yamakawa,et al.  A missense mutation in SCN1A in brothers with severe myoclonic epilepsy in infancy (SMEI) inherited from a father with febrile seizures , 2005, Brain and Development.

[93]  S. Arber,et al.  A Developmental Switch in the Response of DRG Neurons to ETS Transcription Factor Signaling , 2005, PLoS biology.

[94]  K. Yamakawa,et al.  A family of generalized epilepsy with febrile seizures plus type 2—a new missense mutation of SCN1A found in the pedigree of several patients with complex febrile seizures , 2005, Epilepsy Research.

[95]  K. Yamakawa Epilepsy and sodium channel gene mutations: gain or loss of function? , 2005, Neuroreport.

[96]  S. I. Levin,et al.  A Novel Epilepsy Mutation in the Sodium Channel SCN1A Identifies a Cytoplasmic Domain for β Subunit Interaction , 2004, The Journal of Neuroscience.

[97]  Carlos G Vanoye,et al.  Noninactivating voltage-gated sodium channels in severe myoclonic epilepsy of infancy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Ivan Soltesz,et al.  Increased neuronal firing in computer simulations of sodium channel mutations that cause generalized epilepsy with febrile seizures plus. , 2004, Journal of neurophysiology.

[99]  I. Scheffer,et al.  Benign familial neonatal‐infantile seizures: Characterization of a new sodium channelopathy , 2004, Annals of neurology.

[100]  K. Yamakawa,et al.  A Nonsense Mutation of the Sodium Channel Gene SCN2A in a Patient with Intractable Epilepsy and Mental Decline , 2004, The Journal of Neuroscience.

[101]  B. Ding,et al.  Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia , 2004, Journal of Medical Genetics.

[102]  H. Oguni,et al.  Mutations of Neuronal Voltage‐gated Na+ Channel α1 Subunit Gene SCN1A in Core Severe Myoclonic Epilepsy in Infancy (SMEI) and in Borderline SMEI (SMEB) , 2004, Epilepsia.

[103]  O. Devinsky,et al.  Epilepsy-Associated Dysfunction in the Voltage-Gated Neuronal Sodium Channel SCN1A , 2003, The Journal of Neuroscience.

[104]  C. van Broeckhoven,et al.  A deletion in SCN1B is associated with febrile seizures and early-onset absence epilepsy , 2003, Neurology.

[105]  R M Gardiner,et al.  Sodium channel α1-subunit mutations in severe myoclonic epilepsy of infancy and infantile spasms , 2003, Neurology.

[106]  Aldo Quattrone,et al.  Two Novel SCN1A Missense Mutations in Generalized Epilepsy with Febrile Seizures Plus , 2003, Epilepsia.

[107]  E. Bertini,et al.  Spectrum of SCN1A mutations in severe myoclonic epilepsy of infancy , 2003, Neurology.

[108]  Berten Ceulemans,et al.  De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy , 2003, Human mutation.

[109]  K. Yamakawa,et al.  Nav1.1 channels with mutations of severe myoclonic epilepsy in infancy display attenuated currents , 2003, Epilepsy Research.

[110]  Federico Zara,et al.  Familial severe myoclonic epilepsy of infancy: truncation of Nav1.1 and genetic heterogeneity. , 2003, Epileptic disorders : international epilepsy journal with videotape.

[111]  L. Weiss,et al.  Sodium channels SCN1A, SCN2A and SCN3A in familial autism , 2003, Molecular Psychiatry.

[112]  Yukitoshi Takahashi,et al.  Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. , 2003, Brain : a journal of neurology.

[113]  A. L. Goldin,et al.  Generalized epilepsy with febrile seizures plus type 2 mutation W1204R alters voltage-dependent gating of Nav1.1 sodium channels , 2003, Neuroscience.

[114]  I. Scheffer,et al.  Sodium-channel defects in benign familial neonatal-infantile seizures , 2002, The Lancet.

[115]  E. Oka,et al.  Significant correlation of the SCN1A mutations and severe myoclonic epilepsy in infancy. , 2002, Biochemical and biophysical research communications.

[116]  A. George,et al.  Molecular Basis of an Inherited Epilepsy , 2002, Neuron.

[117]  K Fukushima,et al.  Frequent mutations of SCN1A in severe myoclonic epilepsy in infancy , 2002, Neurology.

[118]  Steven Petrou,et al.  Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. , 2002, American journal of human genetics.

[119]  A. L. Goldin,et al.  Functional Effects of Two Voltage-Gated Sodium Channel Mutations That Cause Generalized Epilepsy with Febrile Seizures Plus Type 2 , 2001, The Journal of Neuroscience.

[120]  K. Yamakawa,et al.  Nav1.1 mutations cause febrile seizures associated with afebrile partial seizures , 2001, Neurology.

[121]  L. Lagae,et al.  De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. , 2001, American journal of human genetics.

[122]  H. Lerche,et al.  Enhanced inactivation and acceleration of activation of the sodium channel associated with epilepsy in man , 2001, The European journal of neuroscience.

[123]  M Montal,et al.  A missense mutation of the Na+ channel αII subunit gene Nav1.2 in a patient with febrile and afebrile seizures causes channel dysfunction , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[124]  Michel Baulac,et al.  First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene , 2001, Nature Genetics.

[125]  A. Heils,et al.  A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus--and prevalence of variants in patients with epilepsy. , 2001, American journal of human genetics.

[126]  I. Scheffer,et al.  Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus. , 2001, American journal of human genetics.

[127]  A. L. Goldin,et al.  A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities , 2001, Neuroscience.

[128]  H. Lerche,et al.  A sodium channel mutation causing epilepsy in man exhibits subtle defects in fast inactivation and activation in vitro , 2000, The Journal of physiology.

[129]  E. Masliah,et al.  Neuronal Death and Perinatal Lethality in Voltage-Gated Sodium Channel αII-Deficient Mice , 2000 .

[130]  W. Catterall,et al.  From Ionic Currents to Molecular Mechanisms The Structure and Function of Voltage-Gated Sodium Channels , 2000, Neuron.

[131]  Stéphanie Baulac,et al.  Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2 , 2000, Nature Genetics.

[132]  K. Rhodes,et al.  Type I and type II Na+ channel α‐subunit polypeptides exhibit distinct spatial and temporal patterning, and association with auxiliary subunits in rat brain , 1999, The Journal of comparative neurology.

[133]  Christopher Gillberg,et al.  Genome-Wide Scan for Autism Susceptibility Genes , 1999 .

[134]  Samuel F. Berkovic,et al.  Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel ß1 subunit gene SCN1B , 1998, Nature Genetics.

[135]  Douglas C. Wallace,et al.  Radicals r'aging , 1998, Nature Genetics.

[136]  C. Francks,et al.  A full genome screen for autism with evidence for linkage to a region on chromosome 7q. International Molecular Genetic Study of Autism Consortium. , 1998, Human molecular genetics.

[137]  L. Lecea,et al.  Developmental expression of parvalbumin mRNA in the cerebral cortex and hippocampus of the rat. , 1995, Brain research. Molecular brain research.

[138]  Arthur J Moss,et al.  SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome , 1995, Cell.

[139]  I. Ferrer,et al.  The development of parvalbumin-immunoreactivity in the neocortex of the mouse. , 1994, Brain research. Developmental brain research.

[140]  M. Owen,et al.  The genetic basis of complex human behaviors. , 1994, Science.

[141]  C. Gillberg,et al.  Biology of the Autistic Syndromes , 1994 .

[142]  J. Gusella,et al.  Novel mutations in families with unusual and variable disorders of the skeletal muscle sodium channel , 1992, Nature Genetics.

[143]  W. Catterall,et al.  Elevated expression of type II Na+ channels in hypomyelinated axons of shiverer mouse brain , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[144]  M. Avoli,et al.  Induction of Epileptiform Activity by Temperature Elevation in Hippocampal Slices from Young Rats: An In Vitro Model for Febrile Seizures? , 1992, Epilepsia.

[145]  W. Finley,et al.  Autosomal dominant erythromelalgia. , 1992, American journal of medical genetics.

[146]  Margaret Robertson,et al.  Identification of a mutation in the gene causing hyperkalemic periodic paralysis , 1991, Cell.

[147]  William A. Catterall,et al.  Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons , 1989, Neuron.

[148]  N. Schechter,et al.  Experimental Febrile Convulsions: Long‐Term Effects of Hyperthermia‐Induced Convulsions in the Developing Rat , 1982, Epilepsia.

[149]  J. Olson,et al.  Hyperthermia-induced seizures in the rat pup: a model for febrile convulsions in children. , 1981, Science.

[150]  A. Hodgkin,et al.  The effect of temperature on the electrical activity of the giant axon of the squid , 1949, The Journal of physiology.

[151]  K. Nakazawa,et al.  Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes , 2010, Nature Neuroscience.

[152]  R. Macdonald,et al.  Why Does Fever Trigger Febrile Seizures? GABAA Receptor γ2 Subunit Mutations Associated with Idiopathic Generalized Epilepsies Have Temperature-Dependent Trafficking Deficiencies , 2006, The Journal of Neuroscience.

[153]  H. Oguni,et al.  Severe myoclonic epilepsy in infancy: clinical analysis and relation to SCN1A mutations in a Japanese cohort. , 2005, Advances in neurology.

[154]  H. Oguni,et al.  Severe myoclonic epilepsy in infancy: Dravet syndrome. , 2005, Advances in neurology.

[155]  O. D. Creutzfeldt,et al.  Regional and temporal expression of sodium channel messenger RNAs in the rat brain during development , 2004, Experimental Brain Research.

[156]  M. Frotscher,et al.  Area-specific morphological and neurochemical maturation of non-pyramidal neurons in the rat hippocampus as revealed by parvalbumin immunocytochemistry , 2004, Anatomy and Embryology.

[157]  David A. Williams,et al.  Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures , 2001, Nature Genetics.

[158]  C. Dravet Les epilepsies graves de l'enfant , 1978 .