Phonon interference at self-assembled monolayer interfaces: Molecular dynamics simulations

Using molecular dynamics simulations, we expose phonon interference effects in thermal transports across a self-assembled monolayer SAM of alkanethiol molecules covalently bonded to 111 gold substrate and physically bonded to silicon. In particular, we show that the thermal conductance of SAM-Au interface depends on the bonding strength at the SAM-Si interface and that the phonon transmission coefficients show strong and oscillatory dependence on frequency, with oscillatory features diminishing with increasing SAM thickness. To explore the generality of this behavior we analyze a simple model of point junction on a one-dimensional chain using the scattering boundary method.

[1]  Baowen Li,et al.  Thermal memory: a storage of phononic information. , 2008, Physical review letters.

[2]  Coherent phonons in Si/ SiGe superlattices , 2007 .

[3]  Arnold T. Hagler,et al.  An ab Initio CFF93 All-Atom Force Field for Polycarbonates , 1994 .

[4]  M Trigo,et al.  Confinement of acoustical vibrations in a semiconductor planar phonon cavity. , 2002, Physical review letters.

[5]  W. Saslow,et al.  One-dimensional Kapitza conductance: Comparison of the phonon mismatch theory with computer experiments , 1978 .

[6]  Baowen Li,et al.  Thermal logic gates: computation with phonons. , 2007, Physical review letters.

[7]  A. Gossard,et al.  Selective Transmission of High-Frequency Phonons by a Superlattice: The , 1979 .

[8]  Paul V Braun,et al.  Thermal conductance of hydrophilic and hydrophobic interfaces. , 2006, Physical review letters.

[9]  W. Kobayashi,et al.  An oxide thermal rectifier , 2009, 0910.1153.

[10]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[11]  S. Phillpot,et al.  Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation , 2002 .

[12]  L. Largeau,et al.  Acoustic phonon nanowave devices based on aperiodic multilayers : Experiments and theory , 2007 .

[13]  F. Schreiber Structure and growth of self-assembling monolayers , 2000 .

[14]  Baowen Li,et al.  Thermal diode: rectification of heat flux. , 2004, Physical review letters.

[15]  Spin-boson thermal rectifier. , 2004, Physical review letters.

[16]  Bambi Hu,et al.  Asymmetric heat conduction in nonlinear lattices. , 2006, Physical review letters.

[17]  A. Majumdar,et al.  Room temperature thermal conductance of alkanedithiol self-assembled monolayers , 2006 .

[18]  John Ziman,et al.  Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .

[19]  Michele Parrinello,et al.  Simulation of gold in the glue model , 1988 .

[20]  Baowen Li,et al.  Negative differential thermal resistance and thermal transistor , 2006 .

[21]  William H. Butler,et al.  On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis , 2004 .

[22]  Lei Wang,et al.  Phononics gets hot , 2008 .

[23]  J. A. Carter,et al.  Ultrafast Flash Thermal Conductance of Molecular Chains , 2007, Science.

[24]  Ballistic magnetothermal transport in a Heisenberg spin chain at low temperatures , 2008, 0808.0380.

[25]  Ming Hu,et al.  Kapitza conductance of silicon–amorphous polyethylene interfaces by molecular dynamics simulations , 2009 .

[26]  Barbara J. Garrison,et al.  Diffusion of a Butanethiolate Molecule on a Au{111} Surface , 1997 .

[27]  J. Lü,et al.  Quantum thermal transport in nanostructures , 2008, 0802.2761.

[28]  Baowen Li,et al.  Thermal rectification and negative differential thermal resistance in lattices with mass gradient , 2007, 0707.0977.

[29]  Ralph G. Nuzzo,et al.  Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers , 1990 .