Uniform Stability of Spectral Nonlinear Galerkin Methods

This article provides a stability analysis for the backward Euler schemes of time discretization applied to the spatially discrete spectral standard and nonlinear Galerkin approximations of the nonstationary Navier-Stokes equations with some appropriate assumption of the data (λ, u0, f). If the backward Euler scheme with the semi-implicit nonlinear terms is used, the spectral standard and nonlinear Galerkin methods are uniform stable under the time step constraint Δt ≤ (2/λλ1). Moreover, if the backward Euler scheme with the explicit nonlinear terms is used, the spectral standard and nonlinear Galerkin methods are uniform stable under the time step constraints Δt = O(λ) and Δt = O(λ), respectively, where λ ≤ λ, which shows that the restriction on the time step of the spectral nonlinear Galerkin method is less than that of the spectral standard Galerkin method. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004

[1]  A nonlinear Galerkin method for the shallow-water equations on periodic domains , 2001 .

[2]  R. Temam,et al.  Modelling of the interaction of small and large eddies in two dimensional turbulent flows , 1988 .

[3]  Roger Temam Stability analysis of the nonlinear Galerkin method , 1991 .

[4]  R. Temam,et al.  Nonlinear Galerkin methods: The finite elements case , 1990 .

[5]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[6]  B. Di Martino,et al.  The Generalized Nonlinear Galerkin Method Applied to Hydrodynamics of the Open Sea , 2001 .

[7]  O. Schmidtmann,et al.  Nonlinear Galerkin methods based on the concept of determining modes for the magnetohydrodynamic equations , 1998 .

[8]  G. Sell,et al.  On the computation of inertial manifolds , 1988 .

[9]  Jie Shen Long time stability and convergence for fully discrete nonlinear galerkin methods , 1990 .

[10]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[11]  Yinnian He,et al.  Convergence and stability of finite element nonlinear Galerkin method for the Navier-Stokes equations , 1998 .

[12]  Richard E. Ewing,et al.  A modified nonlinear Galerkin method for the viscoelastic fluid motion equations , 1999 .

[13]  Roger Temam,et al.  The nonlinear Galerkin method in computational fluid dynamics , 1990 .

[14]  Roger Temam,et al.  Time Marching Multilevel Techniques for Evolutionary Dissipative Problems , 2001, SIAM J. Sci. Comput..

[15]  R. Rannacher,et al.  An analysis of stability concepts for the Navier-Stokes equations. , 1986 .

[16]  Jinchao Xu,et al.  Error estimates on a new nonlinear Galerkin method based on two-grid finite elements , 1995 .

[17]  Yinnian He,et al.  Nonlinear Galerkin method and two‐step method for the Navier‐Stokes equations , 1996 .

[18]  Roger Temam,et al.  Induced trajectories and approximate inertial manifolds , 1989 .

[19]  R. Temam,et al.  Nonlinear Galerkin methods , 1989 .

[20]  Roger Temam,et al.  A nonlinear galerkin method: The two-level fourier-collocation case , 1995 .

[21]  D. Gottlieb,et al.  Implementation of the nonlinear Galerkin method with pseudospectral (collocation) discretizations , 1993 .

[22]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[23]  M. Marion,et al.  Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations , 1994 .

[24]  Michal Beneš,et al.  Nonlinear Galerkin method for reaction-diffusion systems admitting invariant regions , 2001 .

[25]  Lucia Dettori,et al.  Fourier Collocation Splittings for Partial Differential Equations , 1998 .

[26]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[27]  Edriss S. Titi,et al.  On approximate Inertial Manifolds to the Navier-Stokes equations , 1990 .