The Complexity of Weighted Boolean #CSP Modulo k

We prove a complexity dichotomy theorem for counting weighted Boolean CSP modulo k for any positive integer k > 1. This generalizes a theorem by Faben for the unweighted setting. In the weighted setting, there are new interesting tractable problems. We first prove a dichotomy theorem for the finite field case where k is a prime. It turns out that the dichotomy theorem for the finite field is very similar to the one for the complex weighted Boolean #CSP, found by [Cai, Lu and Xia, STOC 2009]. Then we further extend the result to an arbitrary integer k.

[1]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[2]  Andrei A. Bulatov,et al.  The complexity of partition functions , 2005, Theor. Comput. Sci..

[3]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[4]  Catherine S. Greenhill,et al.  The complexity of counting graph homomorphisms , 2000 .

[5]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[6]  John Faben The complexity of counting solutions to Generalised Satisfiability Problems modulo k , 2008, ArXiv.

[7]  Martin E. Dyer,et al.  The Complexity of Weighted Boolean #CSP , 2009, SIAM J. Comput..

[8]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[9]  Nadia Creignou,et al.  Complexity of Generalized Satisfiability Counting Problems , 1996, Inf. Comput..

[10]  Martin E. Dyer,et al.  The Complexity of Weighted Boolean #CSP with Mixed Signs , 2009, Theor. Comput. Sci..

[11]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[12]  Martin E. Dyer,et al.  The complexity of counting graph homomorphisms , 2000, Random Struct. Algorithms.

[13]  Jin-Yi Cai,et al.  Graph Homomorphisms with Complex Values: A Dichotomy Theorem , 2013, SIAM J. Comput..

[14]  T. Willmore Algebraic Geometry , 1973, Nature.

[15]  Leslie Ann Goldberg,et al.  A Complexity Dichotomy for Partition Functions with Mixed Signs , 2008, SIAM J. Comput..

[16]  Martin E. Dyer,et al.  On counting homomorphisms to directed acyclic graphs , 2006, JACM.

[17]  John Gill,et al.  Counting Classes: Thresholds, Parity, Mods, and Fewness , 1990, Theoretical Computer Science.

[18]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[19]  Andrei A. Bulatov The Complexity of the Counting Constraint Satisfaction Problem , 2008, ICALP.

[20]  Jin-Yi Cai,et al.  Holant problems and counting CSP , 2009, STOC '09.

[21]  Christos H. Papadimitriou,et al.  Two remarks on the power of counting , 1983, Theoretical Computer Science.