Fracturing a nanoparticle

Conventional wisdom and indirect studies suggest that the mechanical properties of nanoparticles can be considerably different than their bulk properties would predict. However, little is actually known about their mechanical behaviour because of the practical difficulties in investigating individual particles. Direct experimental studies of these properties require knowledge of the crystallographic orientation, size and microstructure of the nanoparticle in order to be complete. By deforming a single nanoparticle in the transmission electron microscope we have been able to determine each of these parameters of an isolated silicon nanoparticle a priori. With this approach, we could then directly examine dynamic deformation processes and demonstrate the first direct observation of plasticity-induced cleavage fracture of a silicon nanoparticle in compression.

[1]  K. M. Zinn,et al.  Transmission electron microscopy. , 1973, International ophthalmology clinics.

[2]  Andrew G. Glen,et al.  APPL , 2001 .

[3]  H. Ogawa,et al.  Quantum size effects on photoluminescence in ultrafine Si particles , 1990 .

[4]  Peter H. McMurry,et al.  NANOSTRUCTURED MATERIALS PRODUCTION BY HYPERSONIC PLASMA PARTICLE DEPOSITION , 1997 .

[5]  A. Thölén,et al.  Strain fields at contacts between small particles. , 2003, Journal of colloid and interface science.

[6]  D. Dimiduk,et al.  Sample Dimensions Influence Strength and Crystal Plasticity , 2004, Science.

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Antonio Prado Moreno,et al.  STARTING RESOURCE CONFIGURATIONS OF RESEARCH-BASED START-UPS AND THE INTERACTION WITH TECHNOLOGY, INSTITUTIONAL BACKGROUND, AND INDUSTRIAL DYNAMICS ANS HEIRMAN Ans.Heirman@vlerick.be , 2003 .

[9]  Joachim V. R. Heberlein,et al.  Focused nanoparticle-beam deposition of patterned microstructures , 2000 .

[10]  Younan Xia,et al.  Geometry and surface state effects on the mechanical response of Au nanostructures , 2004 .

[11]  I. Yonenaga Hardness, Yield Strength, and Dislocation Velocity in Elemental and Compound Semiconductors , 2005 .

[12]  Catherine J. Murphy,et al.  Quantum Dots: A Primer , 2002 .

[13]  M. A. Haque,et al.  In-situ tensile testing of nano-scale specimens in SEM and TEM , 2002 .

[14]  Bicai Pan,et al.  Structures of medium-sized silicon clusters , 1998, Nature.

[15]  E. Stach,et al.  Room temperature dislocation plasticity in silicon , 2005 .

[16]  Desheng Xue,et al.  Preparation and magnetic properties of pure CoO nanoparticles , 2002 .

[17]  L. Eng,et al.  Nanoscale domain engineering and characterization of ferroelectric domains , 1999 .

[18]  C. B. Carter,et al.  Superhard silicon nanospheres , 2003 .

[19]  M. Wall,et al.  Development of an In-Situ Nanoindentation Specimen Holder for the High Voltage Electron Microscope , 1997, Microscopy and Microanalysis.

[20]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[21]  Andreoni,et al.  Structure of nanoscale silicon clusters. , 1994, Physical review letters.

[22]  A. Minor,et al.  Size effects in the nanoindentation of silicon at ambient temperature , 2006 .

[23]  L. Trusov,et al.  Size effects in micromechanics of nanocrystals , 1993 .

[24]  C. B. Carter,et al.  Insights into nanoparticle formation mechanisms , 2006 .

[25]  C. B. Carter,et al.  Analysis of Amorphous and Oxide Surface Layers on Nanoparticles , 2003, Microscopy and Microanalysis.

[26]  K. Furuya,et al.  High-resolution transmission electron microscopy study on the anomalous structure of lead nanoparticles with UHV-MBE-TEM system , 2000 .

[27]  E. Arzt Size effects in materials due to microstructural and dimensional constraints: a comparative review , 1998 .

[28]  D. Maugis Contact, Adhesion and Rupture of Elastic Solids , 2000 .