A Behavioral Circuit Model of Active-Matrix Liquid Crystal Displays for Optical Response Simulation

We propose a behavioral circuit model to precisely predict optical responses of an active-matrix liquid crystal (LC) display (LCD) using a patterned vertical alignment (PVA) mode. To get more accurate simulation results, we propose two LC groups with different time constants for a pixel after observing the LCD pixels by using a high-speed camera. In addition, we include a time-delay concept into our behavioral model for brightening or rising transitions. We describe the behavior of the PVA-LCD by using the analog hardware description language Verilog-A. We simulate the PVA-LCD panel by importing the behavioral circuit model in the circuit simulator SmartSPICE. The simulation results of the transient optical responses show excellent matches with the measurement ones.

[1]  Hiroshi Takahara,et al.  Fast-Response and High-Contrast OCB LCD with LED Backlight , 2008 .

[2]  Herbert De Smet,et al.  Electrical model of a liquid crystal pixel with dynamic, voltage history-dependent capacitance value , 2004 .

[3]  Seung-Woo Lee,et al.  P-137: An Accurate Electrical Model of a Liquid Crystal Cell in Active-Matrix LCD , 2011 .

[4]  Makiko Okumura,et al.  Liquid‐crystal display cell model using piecewise approximations , 1996 .

[5]  Shin-Tson Wu,et al.  Anchoring energy and cell gap effects on liquid crystal response time , 2007 .

[6]  Sang Soo Kim 15.4: Invited Paper: Super PVA Sets New State‐of‐the‐Art for LCD‐TV , 2004 .

[7]  Jun Heo,et al.  51.2: Reducing Gray‐Level Response to One Frame: Dynamic Capacitance Compensation , 2001 .

[8]  Ke-Horng Chen,et al.  Mixed Color Sequential Technique for Reducing Color Breakup and Motion Blur Effects , 2007, Journal of Display Technology.

[9]  Achintya K. Bhowmik,et al.  New method for extracting the capacitance-voltage characteristics of an active-matrix liquid crystal display and its application to overdrive technology , 2009 .

[10]  Sung Min Kim,et al.  Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen , 2007 .

[11]  Jun-Hyung Souk,et al.  P-3: Panel Transmittance Analysis of PVA Mode and a Noble Pixel Design , 2002 .

[12]  Chih-Wei Chen,et al.  57.4: Fast MPRT with High Brightness LCD by 120Hz Local Blinking HDR Systems , 2009 .

[13]  Hao Pan,et al.  Comparisons of motion-blur assessment strategies for newly emergent LCD and backlight driving technologies , 2008 .

[14]  Hiroshi Takahara,et al.  LEDバックライトと新駆動方法を用いた高速・高コントラストOCB-LCD , 2007 .

[15]  Tae-Hyeun Ha,et al.  Locally pixel‐compensated backlight dimming on LED‐backlit LCD TV , 2007 .

[16]  Haruhiko Okumura,et al.  A new low-image-lag drive method for large-size LCTVs , 1993 .

[17]  Vladimir G. Chigrinov,et al.  LCD optimization and modeling , 2003 .

[18]  Brian H. Berkeley,et al.  61.4: Novel Impulsive Driving Schemes Using Frame Rate Doubling for 120Hz LCD Panels , 2007 .

[19]  Hajime Nakamura,et al.  51.1: Overdrive Method for Reducing Response Times of Liquid Crystal Displays , 2001 .

[20]  Oh-Kyong Kwon,et al.  P-75: Accurate Estimation of Optimized Overdriving Values for a TN mode LCD Panel , 2010 .

[21]  Truong Q. Nguyen,et al.  LCD Motion Blur Reduction: A Signal Processing Approach , 2008, IEEE Transactions on Image Processing.

[22]  R. Chen,et al.  Transient‐current asymmetry in CSTN‐LCD panels , 2008 .

[23]  Hoi Sing Kwok,et al.  Fast-response no-bias-bend liquid crystal displays using nanostructured surfaces , 2006 .

[24]  A. P. Mammana,et al.  Electrical modeling of liquid crystal displays-LCDs , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[25]  Hitoshi Aoki,et al.  Dynamic characterization of a-Si TFT-LCD pixels , 1996 .

[26]  Sang-soo Kim,et al.  48.2: DCCII: Novel Method for Fast Response Time in PVA Mode , 2004 .

[27]  K. Ishihara,et al.  Macro-modeling of liquid crystal cell with VerilogA , 2007, 2007 IEEE International Behavioral Modeling and Simulation Workshop.