Nonlinear elliptic equations with measures revisited

We study the existence of solutions of the nonlinear problem $$ \left\{ \begin{alignedat}{2} -\Delta u + g(u) & = \mu & & \quad \text{in } \Omega,\\ u & = 0 & & \quad \text{on } \partial \Omega, \end{alignedat} \right. $$ where $\mu$ is a Radon measure and $g : \mathbb{R} \to \mathbb{R}$ is a nondecreasing continuous function with $g(0) = 0$. This equation need not have a solution for every measure $\mu$, and we say that $\mu$ is a good measure if the Dirichlet problem above admits a solution. We show that for every $\mu$ there exists a largest good measure $\mu^* \leq \mu$. This reduced measure has a number of remarkable properties.

[1]  Alessio Porretta,et al.  Absorption effects for some elliptic equations with singularities , 2005 .

[2]  L. Véron,et al.  Boundary trace of the solutions of the prescribed Gaussian curvature equation , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[3]  Inequalities for potentials of particle systems , 1980 .

[4]  Haïm Brezis,et al.  Nonlinear problems related to the Thomas-Fermi equation , 2003 .

[5]  T. Gallouët,et al.  Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data , 1996 .

[6]  G. Barles,et al.  Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions , 1995 .

[7]  M. Marcus,et al.  The boundary trace of positive solutions of semilinear elliptic equations: The supercritical case , 1998 .

[8]  M. Marcus,et al.  Capacitary estimates of solutions of a class of nonlinear elliptic equations , 2003 .

[9]  P. Meyer,et al.  Probabilités et potentiel , 1966 .

[10]  Haim Brezis,et al.  Blow up for $u_t-\Delta u=g(u)$ revisited , 1996, Advances in Differential Equations.

[11]  M. Marcus,et al.  Capacitary estimates of positive solutions of semilinear elliptic equations with absorbtion , 2004 .

[12]  Some properties of the solutions of obstacle problems with measure data , 2000, math/0006012.

[13]  E. Dynkin Diffusions, Superdiffusions and Partial Differential Equations , 2002 .

[14]  Reduced measures for obstacle problems , 2005 .

[15]  Lawrence Dresner,et al.  Similarity solutions of nonlinear partial differential equations , 1983 .

[16]  Luigi Orsina,et al.  Existence and nonexistence of solutions for some nonlinear elliptic equations , 1997 .

[17]  H. Brezis Semilinear equations in ℝN without condition at infinity , 1984 .

[18]  H. Brezis,et al.  Reduced measures on the boundary , 2005 .

[19]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[20]  H. Brezis,et al.  Removable singularities for some nonlinear elliptic equations , 1980 .

[21]  L. Véron,et al.  Boundary singularities of solutions of some nonlinear elliptic equations , 1991 .

[22]  L. Orsina,et al.  Semilinear equations with exponential nonlinearity and measure data , 2005 .

[23]  Tosis Kato,et al.  Schrödinger operators with singular potentials , 1972 .

[24]  A. Porretta,et al.  Elliptic equations with vertical asymptotes in the nonlinear term , 2006 .

[25]  A. Ponce How to Construct Good Measures , 2005 .

[26]  J. Morel,et al.  Resolution of a semilinear equation in L1 , 1984, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[27]  M. Marcus,et al.  Removable singularities and boundary traces , 2001 .

[28]  F. Smithies Linear Operators , 2019, Nature.

[29]  H. Brezis,et al.  Remarks on the strong maximum principle , 2003, Differential and Integral Equations.

[30]  M. Pierre,et al.  Singularités éliminables pour des équations semi-linéaires , 1984 .

[31]  par Alano Ancona Une propriete d'invariance des ensembles absorbants par perturbation d'un operateur elliiptique , 1979 .

[32]  Strongly nonlinear elliptic boundary value problems , 1978 .

[33]  J. Gall The Brownian snake and solutions of Δu=u2 in a domain , 1995 .

[34]  Haim Brezis,et al.  A VARIATIONAL FORMULATION FOR THE TWO-SIDED OBSTACLE PROBLEM WITH MEASURE DATA , 2002 .

[35]  L. L. Helms Introduction to potential theory , 1971 .

[36]  M. Marcus,et al.  The Boundary Trace of Positive Solutions of Semilinear Elliptic Equations: the Subcritical Case , 1998 .

[37]  H. Brezis,et al.  A new concept of reduced measure for nonlinear elliptic equations , 2004 .

[38]  E. Lieb,et al.  The Thomas-Fermi theory of atoms, molecules and solids , 1977 .

[39]  A. Ponce,et al.  Singularities of positive supersolutions in elliptic PDEs , 2004 .

[40]  Ken-iti Sato,et al.  On the closable parts of pre-Dirichlet forms and the fine supports of underlying measures , 1991 .

[41]  J. Vázquez On a semilinear equation in ℝ2 involving bounded measures , 1983, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.