Beyond covariance realism: a new metric for uncertainty realism
暂无分享,去创建一个
Aubrey B. Poore | Matthew D. Hejduk | Joshua T. Horwood | Jeffrey M. Aristoff | Navraj Singh | A. Poore | Navraj Singh | J. Aristoff | J. Horwood | M. Hejduk
[1] H. Sorenson,et al. Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .
[2] Kazufumi Ito,et al. Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..
[3] Ralph B. D'Agostino,et al. Tests for Departure from Normality , 1973 .
[4] Aubrey B. Poore,et al. Gaussian Sum Filters for Space Surveillance: Theory and Simulations , 2011 .
[5] Aubrey B. Poore,et al. Nonlinear Uncertainty Propagation in Orbital Elements and Transformation to Cartesian Space Without Loss of Realism , 2014 .
[6] M. Stephens. EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .
[7] Oliver E. Drummond,et al. Metrics for evaluating track covariance consistency , 2007, SPIE Optical Engineering + Applications.
[8] Aubrey B. Poore,et al. Implicit-Runge–Kutta-based methods for fast, precise, and scalable uncertainty propagation , 2015 .
[9] Ralph B. D'Agostino,et al. Goodness-of-Fit-Techniques , 2020 .
[10] T. Singh,et al. Uncertainty Propagation for Nonlinear Dynamic Systems Using Gaussian Mixture Models , 2008 .
[11] P. Mahalanobis. On the generalized distance in statistics , 1936 .
[12] W. J. Langford. Statistical Methods , 1959, Nature.
[13] Aubrey B. Poore,et al. Orbit and uncertainty propagation: a comparison of Gauss–Legendre-, Dormand–Prince-, and Chebyshev–Picard-based approaches , 2014 .
[14] Hugh F. Durrant-Whyte,et al. A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..
[15] James Durbin,et al. Components of Cramer-von Mises statistics. I , 1972 .
[16] Aubrey B. Poore,et al. Adaptive Gaussian Sum Filters for Space Surveillance , 2011, IEEE Transactions on Automatic Control.
[17] Gene H. Golub,et al. Matrix computations , 1983 .
[18] Chris Sabol,et al. Linearized Orbit Covariance Generation and Propagation Analysis via Simple Monte Carlo Simulations (Preprint) , 2010 .
[19] Chris Sabol,et al. Comparison of Covariance Based Track Association Approaches Using Simulated Radar Data , 2012 .
[20] J. W. Humberston. Classical mechanics , 1980, Nature.
[21] A. Wald,et al. On the Choice of the Number of Class Intervals in the Application of the Chi Square Test , 1942 .
[22] Aubrey B. Poore,et al. Orbital State Uncertainty Realism , 2012 .
[23] S. Shapiro,et al. An Analysis of Variance Test for Normality (Complete Samples) , 1965 .
[24] David R. Anderson,et al. Model Selection and Multimodel Inference , 2003 .
[25] Aubrey B. Poore,et al. A comparative study of new non-linear uncertainty propagation methods for space surveillance , 2014, Defense + Security Symposium.
[26] D. Darling. The Kolmogorov-Smirnov, Cramer-von Mises Tests , 1957 .
[27] Julian J. Faraway,et al. The Exact and Asymptotic Distributions of Cramer-von Mises Statistics , 1996 .
[28] Aubrey B. Poore,et al. Gauss von Mises Distribution for Improved Uncertainty Realism in Space Situational Awareness , 2014, SIAM/ASA J. Uncertain. Quantification.
[29] Kyle DeMars,et al. THE USE OF SHORT-ARC ANGLE AND ANGLE RATE DATA FOR DEEP-SPACE INITIAL ORBIT DETERMINATION AND TRACK ASSOCIATION , 2010 .