Membrane accessibility of glutathione.

[1]  G. Figtree,et al.  Cell Signaling : Proteins , Pathways and Mechanisms 3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na-K pump in hyperglycemia induced by insulin receptor blockade , 2015 .

[2]  G. Figtree,et al.  Stimulation of the cardiac myocyte Na+-K+ pump due to reversal of its constitutive oxidative inhibition. , 2015, American journal of physiology. Cell physiology.

[3]  P. Nissen,et al.  Structures and characterization of digoxin- and bufalin-bound Na+,K+-ATPase compared with the ouabain-bound complex , 2015, Proceedings of the National Academy of Sciences.

[4]  G. Peters,et al.  Interaction of neurotransmitters with a phospholipid bilayer: a molecular dynamics study. , 2014, Chemistry and physics of lipids.

[5]  H. Khandelia,et al.  Accelerating All-Atom MD Simulations of Lipids Using a Modified Virtual-Sites Technique. , 2014, Journal of chemical theory and computation.

[6]  T. Allen,et al.  Identification of electric-field-dependent steps in the Na(+),K(+)-pump cycle. , 2014, Biophysical journal.

[7]  H. Khandelia,et al.  Insights into the role of cyclic ladderane lipids in bacteria from computer simulations. , 2014, Chemistry and physics of lipids.

[8]  E. Lindahl,et al.  Crystal Structure of Na+, K+-ATPase in the Na+-Bound State , 2013, Science.

[9]  C. Toyoshima,et al.  Crystal structure of a Na+-bound Na+,K+-ATPase preceding the E1P state , 2013, Nature.

[10]  P. Nissen,et al.  Crystal structure of the high-affinity Na+,K+-ATPase–ouabain complex with Mg2+ bound in the cation binding site , 2013, Proceedings of the National Academy of Sciences.

[11]  Frank Delaglio,et al.  A practical implementation of de-Pake-ing via weighted Fourier transformation , 2013, PeerJ.

[12]  P. Nissen,et al.  Flexible P-type ATPases interacting with the membrane. , 2012, Current opinion in structural biology.

[13]  A. Bhatnagar,et al.  Protein S-glutathiolation: redox-sensitive regulation of protein function. , 2012, Journal of molecular and cellular cardiology.

[14]  G. Figtree,et al.  Susceptibility of β1 Na+-K+ Pump Subunit to Glutathionylation and Oxidative Inhibition Depends on Conformational State of Pump* , 2012, The Journal of Biological Chemistry.

[15]  F. Separovic,et al.  Disentanglement of heterogeneous dynamics in mixed lipid systems. , 2011, Biophysical journal.

[16]  K. Geering,et al.  FXYD Proteins Reverse Inhibition of the Na+-K+ Pump Mediated by Glutathionylation of Its β1 Subunit* , 2011, The Journal of Biological Chemistry.

[17]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[18]  G. Figtree,et al.  Reversible oxidative modification: implications for cardiovascular physiology and pathophysiology. , 2010, Trends in cardiovascular medicine.

[19]  C. Toyoshima,et al.  Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain , 2009, Proceedings of the National Academy of Sciences.

[20]  G. Figtree,et al.  Reversible Oxidative Modification: A Key Mechanism of Na+-K+ Pump Regulation , 2009, Circulation research.

[21]  C. Toyoshima,et al.  Crystal structure of the sodium–potassium pump at 2.4 Å resolution , 2009, Nature.

[22]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[23]  P. Nissen,et al.  Crystal structure of the sodium–potassium pump , 2007, Nature.

[24]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[25]  E. Bamberg,et al.  The β Subunit of the Na+/K+-ATPase Follows the Conformational State of the Holoenzyme , 2005, The Journal of general physiology.

[26]  D. Pimentel,et al.  S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide , 2004, Nature Medicine.

[27]  A. Holmgren,et al.  Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. , 2004, Antioxidants & redox signaling.

[28]  F. Separovic,et al.  Solid‐state NMR Structure Determination , 2003, IUBMB life.

[29]  E. Bertini,et al.  Analysis of glutathione: implication in redox and detoxification. , 2003, Clinica chimica acta; international journal of clinical chemistry.

[30]  M. Esmann,et al.  Large-scale preparation of sodium-potassium ATPase from kidney outer medulla. , 2002, Kidney international.

[31]  G. Filomeni,et al.  Cell signalling and the glutathione redox system. , 2002, Biochemical pharmacology.

[32]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[33]  C. Lüpfert,et al.  Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect. , 1999, Biophysical journal.

[34]  R. Clarke,et al.  Effect of lipid structure on the dipole potential of phosphatidylcholine bilayers. , 1997, Biochimica et biophysica acta.

[35]  R. Clarke,et al.  Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects. , 1997, Biochimica et biophysica acta.

[36]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[37]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[38]  A. Zouni,et al.  Kinetics of the Solubilization of Styryl Dye Aggregates by Lipid Vesicles , 1994 .

[39]  A. Visser,et al.  Static and dynamic studies of the potential-sensitive membrane probe RH421 in dimyristoylphosphatidylcholine vesicles. , 1993, Biochimica et biophysica acta.

[40]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[41]  S. Tatulian Binding of alkaline-earth metal cations and some anions to phosphatidylcholine liposomes. , 1987, European journal of biochemistry.

[42]  S. Tatulian Effect of lipid phase transition on the binding of anions to dimyristoylphosphatidylcholine liposomes. , 1983, Biochimica et biophysica acta.

[43]  B. Cornell,et al.  31P nuclear magnetic resonance studies of the association of basic proteins with multilayers of diacyl phosphatidylserine. , 1983, Biochimica et biophysica acta.

[44]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[45]  G. Peterson,et al.  A simplification of the protein assay method of Lowry et al. which is more generally applicable. , 1977, Analytical biochemistry.

[46]  P. Ottolenghi The reversible delipidation of a solubilized sodium-plus-potassium ion-dependent adenosine triphosphatase from the salt gland of the spiny dogfish. , 1975, The Biochemical journal.

[47]  Oliver H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[48]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[49]  A Simplification of the Protein Assay Method of Lowryetal. , 2022 .