Approximation of Dual Gabor Frames, Window Decay, and Wireless Communications
暂无分享,去创建一个
[1] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[2] Square roots in Banach algebras , 1966 .
[3] I. M. Gelfand,et al. Commutative Normed Rings. , 1967 .
[4] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .
[5] M. Rieffel. Projective Modules over Higher-Dimensional Non-Commutative Tori , 1988, Canadian Journal of Mathematics.
[6] Damien Castelain,et al. Digital sound broadcasting to mobile receivers , 1989 .
[7] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[8] Stéphane Jaffard. Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .
[9] Jason Wexler,et al. Discrete Gabor expansions , 1990, Signal Process..
[10] I. Gohberg,et al. Classes of Linear Operators , 1990 .
[11] J. Benedetto,et al. Irregular sampling and the theory of frames, I , 1990 .
[12] I. Daubechies,et al. A simple Wilson orthonormal basis with exponential decay , 1991 .
[13] I. Daubechies,et al. Erratum: A Simple Wilson Orthonormal Basis with Exponential Decay , 1991 .
[14] D. Walnut. Continuity properties of the Gabor frame operator , 1992 .
[15] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[16] A. Ron,et al. Weyl-Heisenberg Frames and Riesz Bases in L2(Rd). , 1994 .
[17] A. Janssen. Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .
[18] M. Wickerhauser,et al. Wavelet Applications in Signal and Image Processing III , 1994 .
[19] I. Daubechies,et al. Gabor Time-Frequency Lattices and the Wexler-Raz Identity , 1994 .
[20] Yiyan Wu,et al. COFDM: an overview , 1995, IEEE Trans. Broadcast..
[21] B. Floch,et al. Coded orthogonal frequency division multiplex , 1995 .
[22] Claude Berrou,et al. Coded orthogonal frequency division multiplex [TV broadcasting] , 1995, Proc. IEEE.
[23] Augustus J. E. M. Janssen. On rationally oversampled Weyl-Heisenberg frames , 1995, Signal Process..
[24] John J. Benedetto,et al. Local frames and noise reduction , 1995, Signal Process..
[25] Ajem Guido Janssen,et al. Some Weyl-Heisenberg frame bound calculations , 1996 .
[26] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[27] Theodore S. Rappaport,et al. Wireless communications - principles and practice , 1996 .
[28] A. Janssen. From continuous to discrete Weyl-Heisenberg frames through sampling , 1997 .
[29] T. Strohmer,et al. Gabor Analysis and Algorithms: Theory and Applications , 1997 .
[30] H. Feichtinger,et al. Gabor Frames and Time-Frequency Analysis of Distributions* , 1997 .
[31] A. Ron,et al. Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .
[32] Jean-Claude Belfiore,et al. A Time-Frequency Well-localized Pulse for Multiple Carrier Transmission , 1997, Wirel. Pers. Commun..
[33] Martin Vetterli,et al. Tight Weyl-Heisenberg frames in l2(Z) , 1998, IEEE Trans. Signal Process..
[34] Andreas F. Molisch,et al. Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels , 1998, IEEE J. Sel. Areas Commun..
[35] Helmut Bölcskei. A necessary and sufficient condition for dual Weyl-Heisenberg frames to be compactly supported , 1999 .
[36] Thomas Strohmer,et al. Painless approximation of dual frames, with applications to shift-invariant systems , 1999, Optics & Photonics.
[37] Helmut Boelcskei. Efficient design of pulse-shaping filters for OFDM systems , 1999, Optics & Photonics.
[38] Thomas Strohmer. Rates of convergence for the approximation of dual shift-invariant systems in ℓ2(ℤ) , 1999 .
[39] Helmut Bölcskei,et al. Gabor frames, unimodularity, and window decay , 2000 .
[40] Ole Christensen,et al. Finite-dimensional approximation of the inverse frame operator , 2000 .
[41] O. Christensen,et al. Approximation of the Inverse Frame Operator and Applications to Gabor Frames , 2000 .
[42] Thomas Strohmer,et al. Numerical analysis of the non-uniform sampling problem , 2000 .
[43] Karlheinz Gröchenig,et al. Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.
[44] K. Gröchenig,et al. Hardy's Theorem and the Short‐Time Fourier Transform of Schwartz Functions , 2001 .
[45] T. Strohmer. Finite-and Infinite-Dimensional Models for Oversampled Filter Banks , 2001 .