Approximation of Dual Gabor Frames, Window Decay, and Wireless Communications

We consider two problems involving Gabor frames that have recently received much attention. The first problem concerns the approximation of dual Gabor frames in L2(R) by finite-dimensional methods. Utilizing the duality relations for Gabor frames we derive a method to approximate the dual Gabor frame, that is much simpler than previously proposed techniques. Furthermore it enables us to give estimates for the approximation rate when the dimension of the finite model approaches infinity. The second problem concerns the relation between the decay of the window function g and its canonical dual window γ=S−1g as well as its canonical tight window ψ=S−1/2g. Based on results on commutative Banach algebras and Laurent operators we derive a general condition under which γ and h inherit the decay properties of g. These derivations are of relevance in the context of wireless communications. More precisely, our results provide a theoretical foundation for a recently proposed method for the design of time-frequency well-localized pulse shapes for orthogonal frequency division multiplexing systems.

[1]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[2]  Square roots in Banach algebras , 1966 .

[3]  I. M. Gelfand,et al.  Commutative Normed Rings. , 1967 .

[4]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[5]  M. Rieffel Projective Modules over Higher-Dimensional Non-Commutative Tori , 1988, Canadian Journal of Mathematics.

[6]  Damien Castelain,et al.  Digital sound broadcasting to mobile receivers , 1989 .

[7]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[8]  Stéphane Jaffard Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .

[9]  Jason Wexler,et al.  Discrete Gabor expansions , 1990, Signal Process..

[10]  I. Gohberg,et al.  Classes of Linear Operators , 1990 .

[11]  J. Benedetto,et al.  Irregular sampling and the theory of frames, I , 1990 .

[12]  I. Daubechies,et al.  A simple Wilson orthonormal basis with exponential decay , 1991 .

[13]  I. Daubechies,et al.  Erratum: A Simple Wilson Orthonormal Basis with Exponential Decay , 1991 .

[14]  D. Walnut Continuity properties of the Gabor frame operator , 1992 .

[15]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[16]  A. Ron,et al.  Weyl-Heisenberg Frames and Riesz Bases in L2(Rd). , 1994 .

[17]  A. Janssen Duality and Biorthogonality for Weyl-Heisenberg Frames , 1994 .

[18]  M. Wickerhauser,et al.  Wavelet Applications in Signal and Image Processing III , 1994 .

[19]  I. Daubechies,et al.  Gabor Time-Frequency Lattices and the Wexler-Raz Identity , 1994 .

[20]  Yiyan Wu,et al.  COFDM: an overview , 1995, IEEE Trans. Broadcast..

[21]  B. Floch,et al.  Coded orthogonal frequency division multiplex , 1995 .

[22]  Claude Berrou,et al.  Coded orthogonal frequency division multiplex [TV broadcasting] , 1995, Proc. IEEE.

[23]  Augustus J. E. M. Janssen On rationally oversampled Weyl-Heisenberg frames , 1995, Signal Process..

[24]  John J. Benedetto,et al.  Local frames and noise reduction , 1995, Signal Process..

[25]  Ajem Guido Janssen,et al.  Some Weyl-Heisenberg frame bound calculations , 1996 .

[26]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[27]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[28]  A. Janssen From continuous to discrete Weyl-Heisenberg frames through sampling , 1997 .

[29]  T. Strohmer,et al.  Gabor Analysis and Algorithms: Theory and Applications , 1997 .

[30]  H. Feichtinger,et al.  Gabor Frames and Time-Frequency Analysis of Distributions* , 1997 .

[31]  A. Ron,et al.  Weyl-Heisenberg frames and Riesz bases in $L_2(\mathbb{R}^d)$ , 1997 .

[32]  Jean-Claude Belfiore,et al.  A Time-Frequency Well-localized Pulse for Multiple Carrier Transmission , 1997, Wirel. Pers. Commun..

[33]  Martin Vetterli,et al.  Tight Weyl-Heisenberg frames in l2(Z) , 1998, IEEE Trans. Signal Process..

[34]  Andreas F. Molisch,et al.  Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels , 1998, IEEE J. Sel. Areas Commun..

[35]  Helmut Bölcskei A necessary and sufficient condition for dual Weyl-Heisenberg frames to be compactly supported , 1999 .

[36]  Thomas Strohmer,et al.  Painless approximation of dual frames, with applications to shift-invariant systems , 1999, Optics & Photonics.

[37]  Helmut Boelcskei Efficient design of pulse-shaping filters for OFDM systems , 1999, Optics & Photonics.

[38]  Thomas Strohmer Rates of convergence for the approximation of dual shift-invariant systems in ℓ2(ℤ) , 1999 .

[39]  Helmut Bölcskei,et al.  Gabor frames, unimodularity, and window decay , 2000 .

[40]  Ole Christensen,et al.  Finite-dimensional approximation of the inverse frame operator , 2000 .

[41]  O. Christensen,et al.  Approximation of the Inverse Frame Operator and Applications to Gabor Frames , 2000 .

[42]  Thomas Strohmer,et al.  Numerical analysis of the non-uniform sampling problem , 2000 .

[43]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[44]  K. Gröchenig,et al.  Hardy's Theorem and the Short‐Time Fourier Transform of Schwartz Functions , 2001 .

[45]  T. Strohmer Finite-and Infinite-Dimensional Models for Oversampled Filter Banks , 2001 .