A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes

[1]  J. Wiśniewski,et al.  Quantitative Analysis of Human Red Blood Cell Proteome. , 2017, Journal of proteome research.

[2]  R. Fischer,et al.  Plasma degradome affected by variable storage of human blood , 2016, Clinical Proteomics.

[3]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[4]  J. Acker,et al.  Storage of red blood cells affects membrane composition, microvesiculation, and in vitro quality , 2013, Transfusion.

[5]  S. Philipsen,et al.  Erythropoiesis: development and differentiation. , 2013, Cold Spring Harbor perspectives in medicine.

[6]  Esther N. Pesciotta,et al.  A label-free proteome analysis strategy for identifying quantitative changes in erythrocyte membranes induced by red cell disorders. , 2012, Journal of proteomics.

[7]  B. Fernández-Fernández,et al.  A role for the membrane proteome in human chronic kidney disease erythrocytes. , 2012, Translational research : the journal of laboratory and clinical medicine.

[8]  D. Berg,et al.  Stepwise isolation of human peripheral erythrocytes, T lymphocytes, and monocytes for blood cell proteomics , 2012, Proteomics. Clinical applications.

[9]  A. D’Alessandro,et al.  Red blood cell storage in SAGM and AS3: a comparison through the membrane two-dimensional electrophoresis proteome. , 2012, Blood transfusion = Trasfusione del sangue.

[10]  A. Zanella,et al.  Hereditary red cell membrane defects: diagnostic and clinical aspects. , 2011, Blood transfusion = Trasfusione del sangue.

[11]  F. Vivanco,et al.  A novel methodology for the analysis of membrane and cytosolic sub‐proteomes of erythrocytes by 2‐DE , 2009, Electrophoresis.

[12]  W. Fried,et al.  Erythropoietin and erythropoiesis. , 2009, Experimental hematology.

[13]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[14]  N. Mohandas,et al.  Red cell membrane: past, present, and future. , 2008, Blood.

[15]  S. Mohammed,et al.  Highly efficient depletion strategy for the two most abundant erythrocyte soluble proteins improves proteome coverage dramatically. , 2008, Journal of proteome research.

[16]  K. M. Hughes,et al.  The Isolation of Reticulocyte-Free Human Red Blood Cells , 2007, Experimental biology and medicine.

[17]  M. Mann,et al.  In-depth analysis of the membrane and cytosolic proteome of red blood cells. , 2006, Blood.

[18]  L. Bulla,et al.  The Proteomics of Sickle Cell Disease: Profiling of Erythrocyte Membrane Proteins by 2D-DIGE and Tandem Mass Spectrometry , 2005, Experimental biology and medicine.

[19]  J. Coorssen,et al.  Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis , 2005, Proteome Science.

[20]  L. Bulla,et al.  The Human Erythrocyte Proteome , 2004, Molecular & Cellular Proteomics.

[21]  Travis Harrison,et al.  Erythrocyte G Protein-Coupled Receptor Signaling in Malarial Infection , 2003, Science.

[22]  Maxey C M Chung,et al.  Separation of human erythrocyte membrane associated proteins with one‐dimensional and two‐dimensional gel electrophoresis followed by identification with matrix‐assisted laser desorption/ionization‐time of flight mass spectrometry , 2002, Proteomics.

[23]  P. F. van der Meer,et al.  Update on leucocyte depletion of blood components by filtration. , 1998, Transfusion science.

[24]  F. Goñi,et al.  Multiple stages of detergent-erythrocyte membrane interaction--a spin label study. , 2011, Biochimica et biophysica acta.

[25]  T. Steck,et al.  Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. , 1973, Journal of supramolecular structure.