Transient beta activity and cortico-muscular connectivity during sustained motor behaviour

[1]  A. Nobre,et al.  Reduced cortico-muscular beta coupling in Parkinson’s disease predicts motor impairment , 2021, bioRxiv.

[2]  Mark W. Woolrich,et al.  EMD: Empirical Mode Decomposition and Hilbert-Huang Spectral Analyses in Python , 2021, J. Open Source Softw..

[3]  L. Fadiga,et al.  Visual detection is locked to the internal dynamics of cortico-motor control , 2020, PLoS biology.

[4]  Mark W. Woolrich,et al.  The role of transient spectral ‘bursts’ in functional connectivity: A magnetoencephalography study , 2020, NeuroImage.

[5]  Mark W. Woolrich,et al.  Dissecting beta-state changes during timed movement preparation in Parkinson’s disease , 2019, Progress in Neurobiology.

[6]  Mark W. Woolrich,et al.  Unpacking Transient Event Dynamics in Electrophysiological Power Spectra , 2019, Brain Topography.

[7]  G. Barnes,et al.  Human motor cortical beta bursts relate to movement planning and response errors , 2019, PLoS biology.

[8]  Gian Domenico Iannetti,et al.  The effect of salient stimuli on neural oscillations, isometric force, and their coupling , 2019, NeuroImage.

[9]  A. Nobre,et al.  Neural Oscillations: Sustained Rhythms or Transient Burst-Events? , 2018, Trends in Neurosciences.

[10]  Giles L. Colclough,et al.  Impaired corticomuscular and interhemispheric cortical beta oscillation coupling in amyotrophic lateral sclerosis , 2018, Clinical Neurophysiology.

[11]  C. Moore,et al.  The rate of transient beta frequency events predicts behavior across tasks and species , 2017, eLife.

[12]  V. Jousmäki,et al.  MEG Insight into the Spectral Dynamics Underlying Steady Isometric Muscle Contraction , 2017, The Journal of Neuroscience.

[13]  Andrea A. Kühn,et al.  Beta burst dynamics in Parkinson’s disease OFF and ON dopaminergic medication , 2017, Brain : a journal of neurology.

[14]  Diego Vidaurre,et al.  Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks , 2017, bioRxiv.

[15]  Wilson Truccolo,et al.  Dissociation between sustained single-neuron spiking and transient β-LFP oscillations in primate motor cortex. , 2017, Journal of neurophysiology.

[16]  S. Jones When brain rhythms aren't ‘rhythmic’: implication for their mechanisms and meaning , 2016, Current Opinion in Neurobiology.

[17]  Eelke Spaak,et al.  The Importance of Single-Trial Analyses in Cognitive Neuroscience , 2016, Trends in Cognitive Sciences.

[18]  E. Miller,et al.  Gamma and Beta Bursts Underlie Working Memory , 2016, Neuron.

[19]  E. Maris,et al.  Touch automatically upregulates motor readiness in humans. , 2015, Journal of neurophysiology.

[20]  A. Graybiel,et al.  Bursts of beta oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys performing movement tasks , 2015, Proceedings of the National Academy of Sciences.

[21]  M. Stokes ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework , 2015, Trends in Cognitive Sciences.

[22]  Stephen M Smith,et al.  Fast transient networks in spontaneous human brain activity , 2014, eLife.

[23]  A. Riehle,et al.  The ups and downs of beta oscillations in sensorimotor cortex , 2013, Experimental Neurology.

[24]  E. Maris,et al.  Somatosensory Demands Modulate Muscular Beta Oscillations, Independent of Motor Demands , 2013, Journal of Neuroscience.

[25]  Nick F. Ramsey,et al.  Human Motor Cortical Activity Is Selectively Phase-Entrained on Underlying Rhythms , 2012, PLoS Comput. Biol..

[26]  C. Miniussi,et al.  The Functional Importance of Rhythmic Activity in the Brain , 2012, Current Biology.

[27]  A. Engel,et al.  Spectral fingerprints of large-scale neuronal interactions , 2012, Nature Reviews Neuroscience.

[28]  P. Brown,et al.  New insights into the relationship between dopamine, beta oscillations and motor function , 2011, Trends in Neurosciences.

[29]  Mark W. Woolrich,et al.  MEG beamforming using Bayesian PCA for adaptive data covariance matrix regularization , 2011, NeuroImage.

[30]  Stuart N Baker,et al.  Contributions of descending and ascending pathways to corticomuscular coherence in humans , 2011, The Journal of physiology.

[31]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[32]  S. Baker,et al.  Corticomuscular Coherence Between Motor Cortex, Somatosensory Areas and Forearm Muscles in the Monkey , 2010, Front. Syst. Neurosci..

[33]  A. Engel,et al.  Beta-band oscillations—signalling the status quo? , 2010, Current Opinion in Neurobiology.

[34]  Norden E. Huang,et al.  On Instantaneous Frequency , 2009, Adv. Data Sci. Adapt. Anal..

[35]  E. Fetz,et al.  Decoupling the Cortical Power Spectrum Reveals Real-Time Representation of Individual Finger Movements in Humans , 2009, The Journal of Neuroscience.

[36]  M. Tsodyks,et al.  Synaptic Theory of Working Memory , 2008, Science.

[37]  S. Baker Oscillatory interactions between sensorimotor cortex and the periphery , 2007, Current Opinion in Neurobiology.

[38]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[39]  Peter Brown,et al.  Corrective movements in response to displacements in visual feedback are more effective during periods of 13–35 Hz oscillatory synchrony in the human corticospinal system , 2006, The European journal of neuroscience.

[40]  Ingeborg Krägeloh-Mann,et al.  Coherent corticomuscular oscillations originate from primary motor cortex: Evidence from patients with early brain lesions , 2006, Human brain mapping.

[41]  G. Buzsáki Rhythms of the brain , 2006 .

[42]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[43]  Peter Brown,et al.  Existing Motor State Is Favored at the Expense of New Movement during 13-35 Hz Oscillatory Synchrony in the Human Corticospinal System , 2005, The Journal of Neuroscience.

[44]  J. Schoffelen,et al.  Neuronal Coherence as a Mechanism of Effective Corticospinal Interaction , 2005, Science.

[45]  James F. Kaiser,et al.  The use of a masking signal to improve empirical mode decomposition , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[46]  S. Bressler,et al.  Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. S. Shen,et al.  A confidence limit for the empirical mode decomposition and Hilbert spectral analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[48]  R. Kristeva-Feige,et al.  Effects of attention and precision of exerted force on beta range EEG-EMG synchronization during a maintained motor contraction task , 2002, Clinical Neurophysiology.

[49]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[50]  R. Lemon,et al.  Human Cortical Muscle Coherence Is Directly Related to Specific Motor Parameters , 2000, The Journal of Neuroscience.

[51]  R. Lesser,et al.  Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. , 1998, Brain : a journal of neurology.

[52]  R. Lesser,et al.  Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. , 1998, Brain : a journal of neurology.

[53]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[54]  R. Hari,et al.  Cortical control of human motoneuron firing during isometric contraction. , 1997, Journal of neurophysiology.

[55]  E. Fetz,et al.  Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. , 1996, Journal of neurophysiology.

[56]  B. Conway,et al.  Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. , 1995, The Journal of physiology.

[57]  R. Hari,et al.  Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement , 1994, Neuroscience.

[58]  E. Fetz,et al.  Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[59]  H. Jasper,et al.  Electrocorticograms in man: Effect of voluntary movement upon the electrical activity of the precentral gyrus , 1949 .