A novel dual-graphite aluminum-ion battery

[1]  Bingan Lu,et al.  A novel aluminum dual-ion battery , 2018 .

[2]  Hui Xia,et al.  High Energy and High Power Lithium‐Ion Capacitors Based on Boron and Nitrogen Dual‐Doped 3D Carbon Nanofibers as Both Cathode and Anode , 2017 .

[3]  Yongbing Tang,et al.  Multifunctional Electrode Design Consisting of 3D Porous Separator Modulated with Patterned Anode for High‐Performance Dual‐Ion Batteries , 2017 .

[4]  Fan Zhang,et al.  A Dual‐Carbon Battery Based on Potassium‐Ion Electrolyte , 2017 .

[5]  Bingan Lu,et al.  Soft Carbon as Anode for High‐Performance Sodium‐Based Dual Ion Full Battery , 2017 .

[6]  Yue-cheng Fang,et al.  Integrated Configuration Design for Ultrafast Rechargeable Dual‐Ion Battery , 2017 .

[7]  Maohua Sheng,et al.  A Novel Tin‐Graphite Dual‐Ion Battery Based on Sodium‐Ion Electrolyte with High Energy Density , 2017 .

[8]  D. Fang,et al.  High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode. , 2017, ACS nano.

[9]  Maohua Sheng,et al.  Carbon‐Coated Porous Aluminum Foil Anode for High‐Rate, Long‐Term Cycling Stability, and High Energy Density Dual‐Ion Batteries , 2016, Advanced materials.

[10]  S. Jiao,et al.  An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene , 2016 .

[11]  Chunsheng Wang,et al.  Electrochemical Intercalation of Potassium into Graphite , 2016 .

[12]  Stefano Passerini,et al.  An Overview and Future Perspectives of Aluminum Batteries , 2016, Advanced materials.

[13]  H. Dai,et al.  3D Graphitic Foams Derived from Chloroaluminate Anion Intercalation for Ultrafast Aluminum‐Ion Battery , 2016, Advanced materials.

[14]  A. Yu,et al.  Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium–sulfur batteries , 2016 .

[15]  S. Jiao,et al.  A Novel Aluminum‐Ion Battery: Al/AlCl3‐[EMIm]Cl/Ni3S2@Graphene , 2016 .

[16]  Fan Zhang,et al.  A Novel Aluminum–Graphite Dual‐Ion Battery , 2016 .

[17]  Feng Wu,et al.  Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries , 2015 .

[18]  P. Ajayan,et al.  Atomic cobalt on nitrogen-doped graphene for hydrogen generation , 2015, Nature Communications.

[19]  S. Jiao,et al.  A new aluminium-ion battery with high voltage, high safety and low cost. , 2015, Chemical communications.

[20]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[21]  M. Winter,et al.  Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte , 2014 .

[22]  N. Hudak Chloroaluminate-Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries , 2014 .

[23]  Kang Xu,et al.  Dual-graphite chemistry enabled by a high voltage electrolyte , 2014 .

[24]  W. Chu,et al.  Retracted Article: Black mesoporous anatase TiO2 nanoleaves: a high capacity and high rate anode for aqueous Al-ion batteries , 2014 .

[25]  M. Winter,et al.  X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells , 2013 .

[26]  Han Yang,et al.  Unidirectional suppression of hydrogen oxidation on oxidized platinum clusters , 2013, Nature Communications.

[27]  Zhenan Bao,et al.  Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles , 2013, Nature Communications.

[28]  Xueping Gao,et al.  Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries , 2012 .

[29]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[30]  M. Ge,et al.  Porous doped silicon nanowires for lithium ion battery anode with long cycle life. , 2012, Nano letters.

[31]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[32]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[33]  L. Archer,et al.  The rechargeable aluminum-ion battery. , 2011, Chemical communications.

[34]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[35]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[36]  B. Jang,et al.  Graphene-based supercapacitor with an ultrahigh energy density. , 2010, Nano letters.

[37]  Yang-Kook Sun,et al.  Nanostructured Anode Material for High‐Power Battery System in Electric Vehicles , 2010, Advanced materials.

[38]  A. Green,et al.  Solution phase production of graphene with controlled thickness via density differentiation. , 2009, Nano letters.

[39]  Andreas Poullikkas,et al.  Overview of current and future energy storage technologies for electric power applications , 2009 .

[40]  A. B. Fuertes,et al.  The production of carbon materials by hydrothermal carbonization of cellulose , 2009 .

[41]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[42]  Ying Wang,et al.  Developments in Nanostructured Cathode Materials for High‐Performance Lithium‐Ion Batteries , 2008 .

[43]  Cheol-Woong Yang,et al.  Evidence of graphitic AB stacking order of graphite oxides. , 2008, Journal of the American Chemical Society.

[44]  Jinghong Li,et al.  Facilitated Lithium Storage in MoS2 Overlayers Supported on Coaxial Carbon Nanotubes , 2007 .

[45]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[46]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[47]  Niels J. Bjerrum,et al.  Aluminum as anode for energy storage and conversion: a review , 2002 .

[48]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[49]  P. Trulove,et al.  Dual Intercalating Molten Electrolyte Batteries , 1994 .

[50]  Bingan Lu,et al.  Graphene Nanoribbons on Highly Porous 3D Graphene for High‐Capacity and Ultrastable Al‐Ion Batteries , 2017, Advanced materials.

[51]  Hui‐Ming Cheng,et al.  Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors , 2017 .

[52]  Quan-hong Yang,et al.  Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges , 2016 .

[53]  M. S. Rao,et al.  Fluorinated Natural Graphite Cathode for Rechargeable Ionic Liquid Based Aluminum–Ion Battery , 2013 .

[54]  Hongmin Zhu,et al.  Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries , 2013 .

[55]  Kang Xu,et al.  Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries , 2003 .