A versatile in vivo system for directed dissection of gene expression patterns

Tissue-specific gene expression using the upstream activating sequence (UAS)–GAL4 binary system has facilitated genetic dissection of many biological processes in Drosophila melanogaster. Refining GAL4 expression patterns or independently manipulating multiple cell populations using additional binary systems are common experimental goals. To simplify these processes, we developed a convertible genetic platform, the integrase swappable in vivo targeting element (InSITE) system. This approach allows GAL4 to be replaced with any other sequence, placing different genetic effectors under the control of the same regulatory elements. Using InSITE, GAL4 can be replaced with LexA or QF, allowing an expression pattern to be repurposed. GAL4 can also be replaced with GAL80 or split-GAL4 hemi-drivers, allowing intersectional approaches to refine expression patterns. The exchanges occur through efficient in vivo manipulations, making it possible to generate many swaps in parallel. This system is modular, allowing future genetic tools to be easily incorporated into the existing framework.

[1]  S. Lindquist,et al.  FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. , 1997, Nucleic acids research.

[2]  Kristin Scott,et al.  Motor Control in a Drosophila Taste Circuit , 2009, Neuron.

[3]  Wei Wang,et al.  piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells , 2009, Nature.

[4]  W. Gehring,et al.  Detection in situ of genomic regulatory elements in Drosophila. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[5]  K. Golic,et al.  Methods for homologous recombination in Drosophila. , 2008, Methods in molecular biology.

[6]  G. Rubin,et al.  Genetic transformation of Drosophila with transposable element vectors. , 1982, Science.

[7]  G. Rubin,et al.  Refinement of Tools for Targeted Gene Expression in Drosophila , 2010, Genetics.

[8]  Daryl M. Gohl,et al.  Enhancer Blocking and Transvection at the Drosophila apterous Locus , 2008, Genetics.

[9]  David Osumi-Sutherland,et al.  FlyBase: enhancing Drosophila Gene Ontology annotations , 2008, Nucleic Acids Res..

[10]  Stephan J. Sigrist,et al.  Bruchpilot, a Protein with Homology to ELKS/CAST, Is Required for Structural Integrity and Function of Synaptic Active Zones in Drosophila , 2006, Neuron.

[11]  Hugo J. Bellen,et al.  P[acman]: A BAC Transgenic Platform for Targeted Insertion of Large DNA Fragments in D. melanogaster , 2006, Science.

[12]  R. A. Bohm,et al.  A genetic mosaic approach for neural circuit mapping in Drosophila , 2010, Proceedings of the National Academy of Sciences.

[13]  B. Dickson,et al.  Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. , 2000, Development.

[14]  A. Handler,et al.  piggyBac internal sequences are necessary for efficient transformation of target genomes , 2005, Insect molecular biology.

[15]  D. Kvitsiani,et al.  Neural Circuitry that Governs Drosophila Male Courtship Behavior , 2005, Cell.

[16]  Andreas S. Thum,et al.  The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.

[17]  G. Rubin,et al.  Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[18]  L. Luo,et al.  piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. , 2008, Developmental cell.

[19]  V. Korzh Transposons as tools for enhancer trap screens in vertebrates , 2007, Genome Biology.

[20]  Liang Liang,et al.  The Q System: A Repressible Binary System for Transgene Expression, Lineage Tracing, and Mosaic Analysis , 2010, Cell.

[21]  A. Handler,et al.  Site-specific genomic targeting in Drosophila. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Tzumin Lee,et al.  Organization and Postembryonic Development of Glial Cells in the Adult Central Brain of Drosophila , 2008, The Journal of Neuroscience.

[23]  Haojiang Luan,et al.  Refined Spatial Manipulation of Neuronal Function by Combinatorial Restriction of Transgene Expression , 2006, Neuron.

[24]  P. Schedl,et al.  Fab-7 functions as a chromatin domain boundary to ensure proper segment specification by the Drosophila bithorax complex. , 1996, Genes & development.

[25]  L. Luo,et al.  Splinkerette PCR for Mapping Transposable Elements in Drosophila , 2010, PloS one.

[26]  E. Wimmer,et al.  piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. , 2003, Genetics.

[27]  Pavel Tomancak,et al.  A toolkit for high-throughput, cross-species gene engineering in Drosophila , 2009, Nature Methods.

[28]  D. Hartl,et al.  Transgene Coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. , 1996, Genetics.

[29]  C.-ting Wu,et al.  Site-Specific Transformation of Drosophila via ϕC31 Integrase-Mediated Cassette Exchange , 2006, Genetics.

[30]  W. Stanford,et al.  Gene-trap mutagenesis: past, present and beyond , 2001, Nature Reviews Genetics.

[31]  R. Yagi,et al.  Refined LexA transactivators and their use in combination with the Drosophila Gal4 system , 2010, Proceedings of the National Academy of Sciences.

[32]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[33]  Michele P Calos,et al.  Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. , 2004, Genetics.

[34]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[35]  K. White,et al.  Versatile P(acman) BAC Libraries for Transgenesis Studies in Drosophila melanogaster , 2009, Nature Methods.

[36]  R. Maeda,et al.  An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases , 2007, Proceedings of the National Academy of Sciences.

[37]  H. Bellen,et al.  Ten Years of Enhancer Detection: Lessons from the Fly , 1999, Plant Cell.

[38]  Feng Chen,et al.  A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac , 2004, Nature Genetics.

[39]  Margaret C. M. Smith,et al.  In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  T. Schlake,et al.  Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. , 1994, Biochemistry.

[41]  J. Brookfield,et al.  Rearranging the centromere of the human Y chromosome with φC31 integrase , 2005, Nucleic acids research.

[42]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[43]  D. Hartl,et al.  Genetic applications of an inverse polymerase chain reaction. , 1988, Genetics.

[44]  Lia S. Campos,et al.  PiggyBac Transposon Mutagenesis: A Tool for Cancer Gene Discovery in Mice , 2010, Science.

[45]  Sen-Lin Lai,et al.  Genetic mosaic with dual binary transcriptional systems in Drosophila , 2006, Nature Neuroscience.

[46]  S. Small,et al.  Site-specific transgenesis by Cre-mediated recombination in Drosophila , 2005, Nature Methods.

[47]  M. Suster,et al.  Refining GAL4‐driven transgene expression in Drosophila with a GAL80 enhancer‐trap , 2004, Genesis.