Tutorial: Point Cloud Library: Three-Dimensional Object Recognition and 6 DOF Pose Estimation

With the advent of new-generation depth sensors, the use of three-dimensional (3-D) data is becoming increasingly popular. As these sensors are commodity hardware and sold at low cost, a rapidly growing group of people can acquire 3- D data cheaply and in real time.

[1]  Gary R. Bradski,et al.  Fast 3D recognition and pose using the Viewpoint Feature Histogram , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[4]  Federico Tombari,et al.  Hough Voting for 3D Object Recognition under Occlusion and Clutter , 2012, IPSJ Trans. Comput. Vis. Appl..

[5]  Nico Blodow,et al.  Combined 2D–3D categorization and classification for multimodal perception systems , 2011, Int. J. Robotics Res..

[6]  Yiannis Aloimonos,et al.  Visual Segmentation of Simple Objects for Robots , 2011, Robotics: Science and Systems.

[7]  Nico Blodow,et al.  Aligning point cloud views using persistent feature histograms , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[9]  Mohammed Bennamoun,et al.  On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes , 2009, International Journal of Computer Vision.

[10]  Markus Vincze,et al.  Ensemble of shape functions for 3D object classification , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[11]  Ko Nishino,et al.  Scale-hierarchical 3D object recognition in cluttered scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[13]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[14]  Nico Blodow,et al.  Close-range scene segmentation and reconstruction of 3D point cloud maps for mobile manipulation in domestic environments , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[16]  Niklas Bergström,et al.  Generating object hypotheses in natural scenes through human-robot interaction , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Nico Blodow,et al.  Fast Point Feature Histograms (FPFH) for 3D registration , 2009, 2009 IEEE International Conference on Robotics and Automation.

[18]  Cristian Sminchisescu,et al.  Efficient Match Kernel between Sets of Features for Visual Recognition , 2009, NIPS.

[19]  Dieter Fox,et al.  A large-scale hierarchical multi-view RGB-D object dataset , 2011, 2011 IEEE International Conference on Robotics and Automation.

[20]  Federico Tombari,et al.  Unique shape context for 3d data description , 2010, 3DOR '10.

[21]  Jitendra Malik,et al.  Local figure-ground cues are valid for natural images. , 2007, Journal of vision.

[22]  Darius Burschka,et al.  An Efficient RANSAC for 3D Object Recognition in Noisy and Occluded Scenes , 2010, ACCV.

[23]  Andrew E. Johnson,et al.  Spin-Images: A Representation for 3-D Surface Matching , 1997 .

[24]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[25]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[26]  Hui Chen,et al.  3D free-form object recognition in range images using local surface patches , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[27]  Danica Kragic,et al.  Generating object hypotheses in natural scenes through human-robot interaction , 2011, IROS 2011.

[28]  Nico Blodow,et al.  CAD-model recognition and 6DOF pose estimation using 3D cues , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).