The chromosome 6q22.33 region is associated with age at diagnosis of type 1 diabetes and disease risk in those diagnosed under 5 years of age

[1]  Hailiang Huang,et al.  Fine-mapping inflammatory bowel disease loci to single variant resolution , 2017, Nature.

[2]  N. Morgan,et al.  Bringing the human pancreas into focus: new paradigms for the understanding of Type 1 diabetes , 2017, Diabetic medicine : a journal of the British Diabetic Association.

[3]  Jonathan M. Cairns,et al.  Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters , 2016, Cell.

[4]  E. Bonifacio,et al.  Rebranding asymptomatic type 1 diabetes: the case for autoimmune beta cell disorder as a pathological and diagnostic entity , 2016, Diabetologia.

[5]  S. Redline,et al.  Control for Population Structure and Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed Models. , 2016, American journal of human genetics.

[6]  Bruce S Weir,et al.  Model-free Estimation of Recent Genetic Relatedness. , 2016, American journal of human genetics.

[7]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[8]  Sylvia Richardson,et al.  Dissection of a Complex Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to Fine Mapping , 2015, bioRxiv.

[9]  Neil M. Walker,et al.  Statistical Colocalization of Genetic Risk Variants for Related Autoimmune Diseases in the Context of Common Controls , 2015, Nature Genetics.

[10]  Manolis Kellis,et al.  Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers , 2015, Nature Genetics.

[11]  Marina Evangelou,et al.  A Method for Gene-Based Pathway Analysis Using Genomewide Association Study Summary Statistics Reveals Nine New Type 1 Diabetes Associations , 2014, Genetic epidemiology.

[12]  M. Pirinen,et al.  Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis , 2013, Nature Genetics.

[13]  J. Danesh,et al.  GUESS-ing Polygenic Associations with Multiple Phenotypes Using a GPU-Based Evolutionary Stochastic Search Algorithm , 2013, PLoS genetics.

[14]  E. Bonifacio,et al.  Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. , 2013, JAMA.

[15]  G. Morahan,et al.  Definition of High-Risk Type 1 Diabetes HLA-DR and HLA-DQ Types Using Only Three Single Nucleotide Polymorphisms , 2013, Diabetes.

[16]  J. Todd,et al.  Evidence of Gene-Gene Interaction and Age-at-Diagnosis Effects in Type 1 Diabetes , 2012, Diabetes.

[17]  David C. Wilson,et al.  Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease , 2012, Nature.

[18]  Tatiana I Axenovich,et al.  Rapid variance components–based method for whole-genome association analysis , 2012, Nature Genetics.

[19]  Zheng Liu,et al.  Profiles of Epigenetic Histone Post-translational Modifications at Type 1 Diabetes Susceptible Genes* , 2012, The Journal of Biological Chemistry.

[20]  P. Visscher,et al.  Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.

[21]  Stef van Buuren,et al.  MICE: Multivariate Imputation by Chained Equations in R , 2011 .

[22]  J. Marchini,et al.  Genotype Imputation with Thousands of Genomes , 2011, G3: Genes | Genomes | Genetics.

[23]  Sarah Edkins,et al.  Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease , 2011, Nature Genetics.

[24]  J. Todd,et al.  Genetic Analysis of Adult-Onset Autoimmune Diabetes , 2011, Diabetes.

[25]  Simon C. Potter,et al.  Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis , 2011, Nature.

[26]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[27]  Sylvia Richardson,et al.  Evolutionary Stochastic Search for Bayesian model exploration , 2010, 1002.2706.

[28]  N. Sasaki,et al.  Contiguous gene deletion of Ptprk and Themis causes T-helper immunodeficiency (thid) in the LEC rat. , 2010, Biomedical research.

[29]  J. Todd,et al.  Overview of the Type I Diabetes Genetics Consortium , 2009, Genes and Immunity.

[30]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[31]  Helen Schuilenburg,et al.  Information for : Genome-wide association study and meta-analysis indicates that over 40 loci affect risk of type 1 diabetes , 2009 .

[32]  L. Kinnunen,et al.  A genome-wide scan for type 1 diabetes susceptibility genes in nuclear families with multiple affected siblings in Finland , 2007, BMC Genetics.

[33]  Simon C. Potter,et al.  Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A , 2007, Nature.

[34]  N. Sasaki,et al.  A deletion mutation of the protein tyrosine phosphatase kappa (Ptprk) gene is responsible for T-helper immunodeficiency (thid) in the LEC rat , 2007, Mammalian Genome.

[35]  R. A. Bailey,et al.  Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes , 2007, Nature Genetics.

[36]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[37]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[38]  Yurii S. Aulchenko,et al.  BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btm108 Genetics and population analysis GenABEL: an R library for genome-wide association analysis , 2022 .

[39]  A. Fasano Clinical presentation of celiac disease in the pediatric population. , 2005, Gastroenterology.

[40]  R. Lorini,et al.  Younger age at onset and sex predict celiac disease in children and adolescents with type 1 diabetes: an Italian multicenter study. , 2004, Diabetes care.

[41]  V. Carey,et al.  Mixed-Effects Models in S and S-Plus , 2001 .

[42]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[43]  L. Aravind,et al.  Corrigendum: Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection , 2010, Nature Immunology.

[44]  K. Mossman The Wellcome Trust Case Control Consortium, U.K. , 2008 .

[45]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[46]  J. Todd,et al.  The British Diabetic Association--Warren repository. , 1990, Autoimmunity.